您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (12): 7-12.doi: 10.6040/j.issn.1671-7554.0.2022.0736

• 基础医学 • 上一篇    

基于氧化应激探讨硫化氢改善阻塞性睡眠呼吸暂停诱发房颤的作用机制

赵亚庆1,2, 徐静雯2,王晓2,侯应龙2,高梅1,2   

  1. 1.山东中医药大学第二临床医学院, 山东 济南 250014;2.山东第一医科大学第一附属医院(山东省千佛山医院)心血管病学, 山东省医药卫生心律失常重点实验室, 山东 济南 250014
  • 发布日期:2022-12-01
  • 通讯作者: 高梅. E-mail:gaomei0217@163.com
  • 基金资助:
    国家自然科学基金(81970281,82205061);中国博士后科学基金(2022M711979);山东省中医药科技项目(2020Q036);山东省千佛山医院国家自然科学基金培育基金(QYPY2020NSFC1012)

Mechanism of hydrogen sulfide in improving atrial fibrillation induced by obstructive sleep apnea based on oxidative stress

ZHAO Yaqing1,2, XU Jingwen2, WANG Xiao2, HOU Yinglong2, GAO Mei1,2   

  1. 1. The Second Clinical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China;
    2. Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University &
    Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan 250014, Shandong, China
  • Published:2022-12-01

摘要: 目的 从减轻阻塞性睡眠呼吸暂停(OSA)诱发房颤大鼠心脏氧化应激角度探讨硫化氢外源性供体硫氢化钠的作用机制,为其治疗房颤提供科学依据。 方法 24只雄性SD大鼠,随机分为对照组、模型组和硫氢化钠干预组,每组8只;各组大鼠均在麻醉状态下行气管插管,模型组和硫氢化钠组采用循环憋气法模拟OSA过程。全程记录心脏电生理过程,实验结束后采集血液及左心房组织。采用硫代巴比妥酸法检测丙二醛含量;采用黄嘌呤氧化酶法检测超氧化物歧化酶活力;采用Western blotting法检测氧化应激指标还原型烟酰胺腺嘌呤二核苷酸(NADPH)氧化酶4和缝隙连接蛋白43的表达水平。 结果 与模型组相比,硫氢化钠干预组房颤诱发率减少、房颤持续时间缩短(P均<0.05);与对照组相比,模型组左心房组织中NADPH氧化酶4表达增高,丙二醛含量增加、超氧化物歧化酶活力降低,伴随缝隙连接蛋白43的表达降低,硫氢化钠干预后,NADPH氧化酶4表达抑制,丙二醛含量降低、超氧化物歧化酶活力增加,缝隙连接蛋白43表达增加(P均<0.05)。 结论 硫化氢可减轻阻塞性睡眠呼吸暂停诱发房颤心脏氧化应激损伤,从而降低房颤的发生维持,其作用机制与抑制NADPH氧化酶4蛋白激活,清除体内氧自由基,抑制脂质过氧化,继而上调缝隙连接蛋白43表达密切相关。

关键词: 心房颤动, 阻塞性睡眠呼吸暂停, 硫化氢, 还原型烟酰胺腺嘌呤二核苷酸氧化酶4

Abstract: Objective To investigate the mechanism of exogenous donor of hydrogen sulfide, NaHS, in the treatment of atrial fibrillation(AF)in rats with obstructive sleep apnea(OSA)induced oxidative stress. Methods A total of 24 male SD rats were randomly divided into control, model and NaHS groups, with 8 rats in each group. All rats were intubated under anesthesia. The model and NaHS groups simulated OSA process by circulating air holding method. The electrophysiological process of the heart was recorded throughout the experiment. Blood and left atrial tissue were collected after the experiment. The content of malondialdehyde was determined with thiobarbituric acid method. The activity of superoxide dismutase was detected with xanthine oxidase method. The expressions of oxidative stress indexes NADPH oxidase 4(Nox4)and connexin 43(Cx43)were detected with Western blotting. Results Compared with the model group, the NaHS group had reduced induction rate and duration of AF(P<0.05). Compared with the control group, the model group had increased expression of Nox4 and malondialdehyde, decreased superoxide dismutase activity, and decreased expression of Cx43. After NaHS intervention, Nox4 expression was inhibited, malondialdehyde content was decreased, superoxide dismutase activity was increased, and Cx43 expression was increased(P<0.05). Conclusion Hydrogen sulfide can reduce the oxidative stress injury of AF induced by OSA, thus reducing the occurrence and duration of AF. The mechanism is closely related to the inhibiting of Nox4 activation, scavenging of oxygen free radicals, inhibiting of lipid peroxidation, and up-regulating of Cx43 expression.

Key words: Atrial fibrillation, Obstructive sleep apnea, Hydrogen sulfide, NADPH oxidase 4

中图分类号: 

  • R541.7
[1] Kornej J, Benjamin EJ, Magnani JW. Atrial fibrillation: global burdens and global opportunities [J]. Heart, 2021: 516-518. doi: 10.1136/heartjnl-2020-318480.
[2] Baman JR, Passman RS. Atrial Fibrillation [J]. JAMA, 2021, 325(21): 2218.
[3] Serpytis R, Navickaite A, Serpytiene E, et al. Impact of atrial fibrillation on cognitive function, psychological distress, quality of life, and impulsiveness [J]. Am J Med, 2018, 131(6): 701-703.
[4] Huang B, Liu H, Scherlag BJ, et al. Atrial fibrillation in obstructive sleep apnea: neural mechanisms and emerging therapies [J]. Trends Cardiovasc Med, 2021, 31(2): 127-132.
[5] Goudis CA, Ketikoglou DG. Obstructive sleep and atrial fibrillation: Pathophysiological mechanisms and therapeutic implications [J]. Int J Cardiol, 2017, 230: 293-300. doi: 10.1016/j.ijcard.2016.12.120.
[6] Avula U, Hernandez JJ, Yamazaki M, et al. Atrial infarction-induced spontaneous focal discharges and atrial fibrillation in sheep: role of dantrolene-sensitive aberrant ryanodine receptor calcium release [J]. Circ Arrhythm Electrophysiol, 2018, 11(3): e5659.
[7] Cai X, Yang C, Shao L, et al. Targeting NOX 4 by petunidin improves anoxia/reoxygenation-induced myocardium injury [J]. Eur J Pharmacol, 2020, 888: 173414. doi: 10.1016/j.ejphar.2020.173414.
[8] Pei J, Wang F, Pei S, et al. Hydrogen sulfide promotes cardiomyocyte proliferation and heart regeneration via ROS scavenging [J]. Oxid Med Cell Longev, 2020, 2020: 1412696. doi: 10.1155/2020/1412696.
[9] Nguyen K, Chau VQ, Mauro AG, et al. Hydrogen sulfide therapy suppresses cofilin-2 and attenuates ischemic heart failure in a mouse model of myocardial infarction [J]. J Cardiovasc Pharmacol Ther, 2020, 25(5): 472-483.
[10] Lv B, Chen S, Tang C, et al. Hydrogen sulfide and vascular regulation- An update [J]. J Adv Res, 2021, 27: 85-97. doi: 10.1016/j.jare.2020.05.007.
[11] Gao M, Zhang L, Scherlag BJ, et al. Low-level vagosympathetic trunk stimulation inhibits atrial fibrillation in a rabbit model of obstructive sleep apnea [J]. Heart Rhythm, 2015, 12(4): 818-824.
[12] Wiktorowicz A, Kleczynski P, Dziewierz A, et al. Impact of pre-procedural cerebrovascular events on clinical outcomes after transcatheter aortic valve implantation in patients with severe aortic stenosis [J]. Curr Pharm Des, 2018, 24(5): 641-646.
[13] Guilleminault C, Connolly SJ, Winkle RA. Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome [J]. Am J Cardiol, 1983, 52(5): 490-494.
[14] Bazan V, Vicente I, Lozano L, et al. Previously undetected obstructive sleep apnea in patients with new-onset atrial fibrillation [J]. Am J Cardiol, 2021, 138: 46-52. doi: 10.1016/j.amjcard.2020.09.058.
[15] Linz B, Hohl M, Lang L, et al. Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model [J]. Heart Rhythm, 2021, 18(3): 455-464.
[16] Tietjens JR, Claman D, Kezirian EJ, et al. Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy [J]. J Am Heart Assoc, 2019, 8(1): e10440.
[17] Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol [J]. Biochem Biophys Res Commun, 2004, 318(3): 756-763.
[18] Zhang HX, Liu SJ, Tang XL, et al. H2S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation [J]. Cell Physiol Biochem, 2016, 40(6): 1603-1612.
[19] Li L, Li M, Li Y, et al. Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-kappaB and JAK2-STAT3 pathways in the aging cardiomyocytes [J]. Cell Biosci, 2016, 6: 26. doi: 10.1186/s13578-016-0090-x.
[20] Pan TT, Feng ZN, Lee SW, et al. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes [J]. J Mol Cell Cardiol, 2006, 40(1): 119-130.
[21] Watts M, Kolluru GK, Dherange P, et al. Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation [J]. Redox Biol, 2021, 38: 101817. doi: 10.1016/j.redox.2020.101817.
[22] Xue X, Ling X, Xi W, et al. Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway [J]. Mol Med Rep, 2020, 22(3): 1759-1766.
[23] Imano H, Kato R, Tanikawa S, et al. Factor Xa inhibition by rivaroxaban attenuates cardiac remodeling due to intermittent hypoxia [J]. J Pharmacol Sci, 2018, 137(3): 274-282.
[24] Zhang Y, Murugesan P, Huang K, et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets [J]. Nat Rev Cardiol, 2020, 17(3): 170-194.
[25] Gray SP, Shah AM, Smyrnias I. NADPH oxidase 4 and its role in the cardiovascular system [J]. Vasc Biol, 2019, 1(1): 59-66.
[26] Wang Y, Zhong L, Liu X, et al. ZYZ-772 prevents cardiomyocyte injury by suppressing Nox4-Derived ROS production and apoptosis [J]. Molecules, 2017, 22(2): 331.
[27] Zhang Y, Qi Y, Li JJ, et al. Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts [J]. Cardiovasc Res, 2021, 117(4): 1091-1102.
[28] Lu G, Xu C, Tang K, et al. H2S inhibits angiotensin II-induced atrial Kv1.5 upregulation by attenuating Nox4-mediated ROS generation during atrial fibrillation [J]. Biochem Biophys Res Commun, 2017, 483(1): 534-540.
[29] 刘艳丽, 刘奔, 屈扬扬, 等. 氧化应激和钙/钙调蛋白依赖性蛋白激酶II参与β肾上腺素受体持久激动引起的大鼠心肌肥厚[J]. 生理学报, 2013, 65(1): 1-7. LIU Yanli, LIU Ben, QU Yangyang, et al. Oxidative stress and calcium / calmodulin dependent protein kinase II involvement β Myocardial hypertrophy induced by sustained adrenaline receptor activation in rats [J] Journal of physiology, 2013, 65(1): 1-7.
[30] Lu W, Kang J, Hu K, et al. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia [J]. Sleep Breath, 2017, 21(3): 667-677.
[31] Li J, Wang S, Bai J, et al. Novel Role for the immunoproteasome subunit PSMB10 in angiotensin II-Induced atrial fibrillation in mice [J]. Hypertension, 2018, 71(5): 866-876.
[32] Petersen F, Rodrigo R, Richter M, et al. The effects of polyunsaturated fatty acids and antioxidant vitamins on atrial oxidative stress, nitrotyrosine residues, and connexins following extracorporeal circulation in patients undergoing cardiac surgery [J]. Mol Cell Biochem, 2017, 433(1-2): 27-40.
[33] Linz B, Hohl M, Lang L, et al. Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model [J]. Heart Rhythm, 2021, 18(3): 455-464.
[1] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
[2] 黄柏松,丛洪良. 1 430例中年中危血栓栓塞风险心房颤动抗凝治疗的方案[J]. 山东大学学报 (医学版), 2021, 59(10): 49-67.
[3] 刘东路,王曦敏,李展,杜娟娟,李建华,马神洲,侯应龙. LncRNA056298通过影响生长相关蛋白43的表达介导射频消融犬的神经重构[J]. 山东大学学报 (医学版), 2020, 58(5): 27-37.
[4] 郭静, 张宇,杨玉娟,孙月眉,刘丽萍,宋西成. 气道管理流程在儿童阻塞性睡眠呼吸暂停低通气综合征患者加速康复中的应用[J]. 山东大学学报 (医学版), 2019, 57(9): 54-58.
[5] 李建华,李展,贾晓萌,杜娟娟,马神洲,刘东路,张勇,张玉娇,侯应龙. TCONS_00016478 通过PGC1-α/ PPARγ信号通路影响实验性房颤兔心房肌能量代谢重构的机制[J]. 山东大学学报 (医学版), 2019, 57(4): 1-8.
[6] 陈琳琳,衣少雷,王蔚宗,李展,张勇,张玉娇,任满意,解新星,刘同宝,侯应龙. 预测心房颤动患者射频消融术后复发的危险因素[J]. 山东大学学报 (医学版), 2019, 57(3): 49-57.
[7] 张红霞,徐永红,陈莉,龚辉成. 成人阻塞性睡眠呼吸暂停低通气综合征外周血TM、MPO的检测及意义[J]. 山东大学学报(医学版), 2016, 54(12): 67-71.
[8] 赵蕙琛,柴家超,张亮,袁明振,彭力,刘元涛. 糖尿病大鼠阴茎海绵体硫化氢含量及其合成酶表达的变化[J]. 山东大学学报(医学版), 2016, 54(10): 25-28.
[9] 张凯, 梁飞, 韩波, 马晓春, 朱小龙, 张军, 张涛, 邹承伟. 同期射频消融改良迷宫Ⅲ术+心脏神经节丛消融术与单纯射频消融改良迷宫Ⅲ术治疗合并风湿性二尖瓣病变的心房颤动比较[J]. 山东大学学报(医学版), 2015, 53(5): 66-70.
[10] 张风雷, 郑曼, 张琦, 顾磊, 徐新生. 代谢综合征与P波离散度关系的探讨[J]. 山东大学学报(医学版), 2015, 53(2): 52-55.
[11] 韩波1,2,王建春2,张涛2,朱小龙2,李丛2,王正军2,赵勇2,邹承伟2. 风湿性心房颤动患者左心房组织中钙蛋白酶-2的表达[J]. 山东大学学报(医学版), 2014, 52(4): 93-96.
[12] 赵乾1,刘蕊2,徐振兴1,朱世明1. H型高血压患者血浆同型半胱氨酸、硫化氢水平与脑循环动力学的相关性[J]. 山东大学学报(医学版), 2013, 51(2): 57-60.
[13] 程显峰,梁飞,张骞,朱小龙,张海洲,张涛,韩波,邹承伟. 同期射频消融改良迷宫Ⅲ术+心脏神经节丛消融治疗心房颤动[J]. 山东大学学报(医学版), 2013, 51(2): 53-56.
[14] 王小磊1,高聆1,于春晓1,刘元涛2,张楠1,管庆波1,赵家军1. 硫化氢对高糖诱导的血管炎症反应的影响[J]. 山东大学学报(医学版), 2013, 51(2): 44-48.
[15] 郑少华1,张玉娇1,李志远2,侯绪娟3,王曦敏1,段文昌4,侯应龙1. 持续性快速右心房起搏犬肺静脉-左心房连接处自主神经重构的研究[J]. 山东大学学报(医学版), 2013, 51(12): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!