您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (2): 109-114.doi: 10.6040/j.issn.1671-7554.0.2021.0778

• 公共卫生与管理学 • 上一篇    下一篇

基于面板数据模型研究某企业员工血压水平的变化趋势及影响因素

罗潇1,戴翔2,贾存显1,宋华翠2,高莉洁1   

  1. 1.山东大学公共卫生学院流行病学系, 山东 济南 250012;2.山东电力中心医院健康研究室, 山东 济南 250001
  • 发布日期:2022-01-25
  • 通讯作者: 高莉洁. E-mail:lijiegao@sdu.edu.cn

Changing trend and influencing factors of blood pressure level among staff based on panel data model

LUO Xiao1, DAI Xiang2, JIA Cunxian1, SONG Huacui2, GAO Lijie1   

  1. 1. Department of Epidemiology, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Health Laboratory, Shandong Electric Power Central Hospital, Jinan 250001, Shandong, China
  • Published:2022-01-25

摘要: 目的 通过面板数据模型分析某企业员工连续4年的血压水平变化及血糖、血脂等体检指标对血压的影响。 方法 收集某企业员工2015~2018年的健康体检结果,建立面板数据。对血压水平变化进行趋势检验;分别以收缩压和舒张压为因变量,以血糖、血脂等体检指标为自变量,以年龄为控制变量,采用固定效应模型分析上述指标对血压的影响。 结果 (1)收缩压随时间呈上升的趋势(F=12.451, P<0.05),舒张压呈波动上升趋势(F=7.682, P<0.05)。(2)多因素分析发现空腹血糖甘油三酯总胆固醇和低密度脂蛋白是收缩压的危险因素(P<0.05);空腹血糖甘油三酯总胆固醇低密度脂蛋白和同型半胱氨酸是舒张压的危险因素(P<0.05)。 结论 对连续测量的体检数据,采用面板数据模型分析综合了时间和个体效应;员工血压水平随时间推移呈上升趋势;血压应当从血糖、血脂等多方面展开控制。

关键词: 面板数据模型, 血压, 生化指标, 健康体检

Abstract: Objective To analyze the changes of blood pressure of staff in an enterprise for 4 consecutive years and to analyze the impact of blood sugar, blood lipids and other health examination indicators on blood pressure using the panel data model. Methods The health examination results from 2015 to 2018 were collected, and panel data were established. The changes in blood pressure were determined with trend test. With systolic and diastolic blood pressure as dependent variables, blood glucose, blood lipids, other health examination indicators as independent variables, and age as control variables, effects of the above indicators on blood pressure were analyzed with fixed-effects model. Results (1) Systolic blood pressure increased over time(F=12.451, P<0.05)and diastolic blood pressure showed a fluctuating upward trend(F=7.682, P<0.05). (2) Multivariate analysis showed that fasting blood glucose, triglyceride, total cholesterol, and low-density lipoprotein were risk factors of systolic blood pressure(P<0.05); fasting blood glucose, triglyceride, total cholesterol, low-density lipoprotein, and homocysteine were risk factors of diastolic blood pressure(P<0.05). Conclusion The blood pressure shows an upward trend over time. Due attention should be paid to blood sugar, blood lipids and other indicators to control blood pressure.

Key words: Panel data model, Blood pressure, Biochemical index, Health examination

中图分类号: 

  • R181
[1] 健康中国行动推进委员会. 健康中国行动(2019-2030年): 总体要求、重大行动及主要指标[J]. 中国循环杂志, 2019, 34(9): 846-858.
[2] 李欣, 栾德春, 任时, 等. 辽宁省成年居民测量体重、血压、血糖、血脂和医学体检状况分析[J]. 中国健康教育, 2018, 34(12): 1067-1071. LI Xin, LUAN Dechun, REN Shi, et al. Analysis on the status of medical examination among adult residents in Liaoning Province [J]. Chinese Journal of Health Education, 2018, 34(12): 1067-1071.
[3] 杨建卫. 应用面板数据模型研究人群血糖与血尿酸水平关系[D]. 广州: 暨南大学, 2018.
[4] 巴蒂·H·巴尔塔基. 面板数据计量经济分析[M]. 白仲林, 译. 北京: 机械工业出版社, 2010: 10-29.
[5] 冯国双, 于石成, 胡跃华. 面板数据模型在手足口病与气温关系研究中的应用[J]. 中国预防医学杂志, 2013, 14(12): 910-913. FENG Guoshuang, YU Shicheng, HU Yuehua. Application of panel data model in the study of the relationship between reported hand-foot-mouth morbidity and temperature [J]. Chinese Preventive Medicine, 2013, 14(12): 910-913.
[6] 李娟, 赵海萍, 谢小莲, 等. 宁夏汉族中小学生2000-2014年血压变化趋势[J]. 中国学校卫生, 2020, 41(5): 755-758. LI Juan, ZHAO Haiping, XIE Xiaolian, et al. Trends analysis of blood pressure among Ningxia Han ethnic students aged 7-18 years from 2000 to 2014 [J]. Chinese Journal of School Health, 2020, 41(5): 755-758.
[7] 董晓梅, 杨建卫, 庞敏慧, 等. 利用面板数据模型研究血脂对血压的影响[J]. 实用预防医学, 2018, 25(2): 129-132. DONG Xiaomei, YANG Jianwei, PANG Minhui, et al. Application of a panel data model to studying the effects of blood lipids on blood pressure [J]. Practical Preventive Medicine, 2018, 25(2): 129-132.
[8] 贾欣欣. 格兰杰因果关系在神经科学领域的发展及缺陷[J]. 电子科技, 2015, 28(8): 178-181. JIA Xinxin. Development and limitations of Granger Causality in Neuroscience [J]. Electronic Science and Technology, 2015, 28(8): 178-181.
[9] 廖文琪, 田秋红. 人口老龄化对人口集聚的影响——基于面板数据模型[J]. 农业与技术, 2021, 41(7): 157-159.
[10] Hemant K. Bhargava, abhay nath mishra(2014)electronic medical records and physician productivity: evidence from panel data analysis [J]. Management Science, 2014, 60(10): 2543-2562.
[11] Hosseini Jebeli SS, Hadian M, Souresrafil A. Study of health resource and health outcomes: Organization of economic corporation and development panel data analysis [J]. J Educ Heal Promot, 2019, 8: 70. doi: 10.4103/jehp.jehp_101_18.
[12] Bayati M, Mehrnoosh E. Factors affecting hospital mortality rate in Iran: a panel data analysis [J]. BMC Res Notes, 2020, 13(1): 558.
[13] 田海艳, 江航宇, 张容, 等. 健康管理高血压患者血压控制及影响因素分析[J]. 现代预防医学, 2021, 48(5): 893-896. TIAN Haiyan, JIANG Hangyu, ZHANG Rong, et al. Analysis on the effect and influencing factors of blood pressure control in hypertensive patients with community health management [J]. Modern Preventive Medicine, 2021, 48(5): 893-896.
[14] 程臻, 胡瑜, 刘雨濛. 体检人群中体重指数与血压、血脂、血糖及血尿酸的相关性分析[J]. 当代医学, 2021, 27(1): 22-25. CHENG Zhen, HU Yu, LIU Yumeng. Correlation analysis of BMI with BP, serum lipid, FPG and SUA in physical check-ups [J]. Contemporary Medicine, 2021, 27(1): 22-25.
[15] Liu C, Liao Y, Zhu Z, et al. The association between serum copper concentrations and elevated blood pressure in US children and adolescents: National Health and Nutrition Examination Survey 2011-2016 [J]. BMC Cardiovasc Disord, 2021, 21(1): 57.
[16] 冯伟, 曹云生, 李寿俊. 奉化市居民高血压患病率变化趋势分析[J]. 浙江预防医学, 2012, 24(8): 4-6. FENG Wei, CAO Yunsheng, LI Shoujun. Analysis on the trend of prevalence of hypertension among residents in Fenghua City [J]. Zhejiang Preventive Medicine, 2012, 24(8): 4-6.
[17] 刘剑峰, 刘湘琳, 吕淑荣, 等. 江苏省居民血压变化趋势及与BMI和腰围关系[J]. 中国公共卫生, 2013, 29(6): 792-795. LIU Jianfeng, LIU Xianglin, Lü Shurong, et al. Association of change trend of blood pressure with BMI and waist circumference among residents in Jiangsu province, 2007-2010 [J]. Chinese Journal of Public Health, 2013, 29(6): 792-795.
[18] 罗文婷, 戴龙. 厦门市老年人高血压及糖尿病患病情况分析[J]. 中国公共卫生, 2019, 35(8): 1006-1009. LUO Wenting, DAI Long. Prevalence of hypertension and diabetes in elderly people in Xiamen city [J]. Chinese Journal of Public Health, 2019, 35(8): 1006-1009.
[19] 王冠, 雷蓉, 田维科, 等. 某医疗机构职工连续5年健康体检部分生化指标结果分析[J]. 现代医药卫生, 2020, 36(23): 3834-3837. WANG Guan, LEI Rong, TIAN Weike, et al. Analysis of some biochemical indexes of health examination for employees of a medical institution for 5 consecutive years [J]. Journal of Modern Medicine & Health, 2020, 36(23): 3834-3837.
[20] 周勃. 铁路职工高血压患病现状与健康体检实验室项目相关性调查[J]. 中国公共卫生管理, 2020, 36(6): 837-840. ZHOU Bo. Investigation of correlation between prevalence of hypertension and laboratory items of health examination among railway staff [J]. Chinese Journal of Public Health Management, 2020, 36(6): 837-840.
[21] 赖晓英, 欧阳平, 朱宏, 等. 2009-2018年广东省某医院体检人群血压偏高检出率及相关因素分析[J]. 广东医学, 2020, 41(18): 1924-1930. LAI Xiaoying, OUYANG Ping, ZHU Hong, et al. The prevalence of high blood pressure and risk factors in the physical examination population of a hospital in Guangdong Province from 2009 to 2018 [J]. Guangdong Medical Journal, 2020, 41(18): 1924-1930.
[22] 陈福生, 徐玲, 陈海燕. 体检人群中高血压与血脂异常的关系分析[J]. 现代预防医学, 2008, 35(23): 4757-4757. CHEN Fusheng, XU Ling, CHEN Haiyan. Relationship between hypertension and dyslipidemia in physical examination population [J]. Modern Preventive Medicine, 2008, 35(23): 4757-4757.
[23] 刘冰, 李卫, 胡泊, 等. 中国35~45岁人群高血压前期检出率及影响因素分析[J]. 中华高血压杂志, 2010, 18(2): 187-192. LIU Bing, LI Wei, HU Bo, et al. Prevalence and determinants of prehypertension in a Chinese Population of 34-45 Years Old [J]. Chinese Journal of Hypertension, 2010, 18(2): 187-192.
[24] 雷龙涛, 杨帅平, 李蕾, 等. 原发性高血压血浆同型半胱氨酸水平与动态血压变化的关系[J]. 临床研究, 2021, 29(3): 25-27.
[25] Zhang J, Li J, Chen S, et al. Modification of platelet count on the association between homocysteine and blood pressure: a moderation analysis in Chinese hypertensive patients [J]. Int J Hypertens, 2020, 2020: 5983574. doi: 10.1155/2020/5983574.
[26] 白仲林. 面板数据模型的设定、统计检验和新进展[J]. 统计与信息论坛, 2010, 25(10): 3-12. BAI Zhonglin. The specification of model, statistical tests and new progresses of panel data analysis [J]. Statistics & Information Forum, 2010, 25(10): 3-12.
[27] 陈维炬. 高血压患者血压的控制效果及影响因素研究[J]. 中国医药指南, 2020, 18(15): 41-43. CHEN Weiju. Study on blood pressure control effect and influencing factors in patients with hypertension [J]. Guide of China Medicine, 2020, 18(15): 41-43.
[28] 李福林, 刘俊梅. 宁夏某社区高血压患者血压控制影响因素分析[J]. 临床医药文献电子杂志, 2020, 7(28): 183-184.
[29] 梁赤波, 郑坚荣, 黄凤鸣. 2019年东莞市长安镇高血压患者血压控制现状及其影响因素分析[J]. 中国初级卫生保健, 2021, 35(2): 36-40. LIANG Chibo, ZHENG Jianrong, HUANG Fengming. Analyzing the current blood pressure control status and influence factors of hypertensive patients in Changan town in 2019 [J]. Chinese Primary Health Care, 2021, 35(2): 36-40.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18.
[3] 宋钰峰,宁豪,姚志刚,吴海虎,刘非凡,吕家驹. 肾上腺海绵状血管瘤临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(2): 37-42.
[4] 吕岩红,张志勉. 2 809名体检人群中高血压与幽门螺杆菌感染的关联性[J]. 山东大学学报 (医学版), 2022, 60(2): 43-47.
[5] 顼小凤,王健祯,杨泽华. 血浆游离线粒体DNA拷贝数与烧伤患者病情的相关性[J]. 山东大学学报 (医学版), 2021, 59(11): 61-66.
[6] 贾明旺,廖广园,熊明媚,徐文婷,王银玲,王懿春. 84例妊娠合并肺高血压患者预后的临床分析[J]. 山东大学学报 (医学版), 2021, 59(1): 34-39.
[7] 许琴,高梅,王海民,曹凌瑕,孙成林. 常染色体显性多囊肾病伴原发性醛固酮增多症1例[J]. 山东大学学报 (医学版), 2020, 58(4): 118-120.
[8] 林伟强,王春霞,李明卓,孙秀彬,刘言训,薛付忠,袁中尚. 中老年人血压变化轨迹与冠心病发病的关系[J]. 山东大学学报 (医学版), 2019, 57(4): 106-112.
[9] 国雪杰,杨孝荣,桑少伟,刘兵艳,吕明. 济南市平阴县农村成年居民高血压知晓现状及影响因素[J]. 山东大学学报 (医学版), 2019, 57(12): 103-109.
[10] 王倩,徐凌忠,朱静,张娇,谢苏,于子航. 山东省农村老年高血压患者心理健康状况及其影响因素[J]. 山东大学学报 (医学版), 2019, 57(1): 92-100.
[11] 薛莉,胡文琦,魏然,张安然,林君芬,马伟. 2011~2013年高温热浪对苍南县高血压门诊就诊量的影响[J]. 山东大学学报 (医学版), 2018, 56(8): 63-69.
[12] 王宁,黄金明,丁国永,李学文. 面板数据模型在湖南省干旱敏感传染病筛选中的应用[J]. 山东大学学报 (医学版), 2018, 56(8): 70-75.
[13] 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65.
[14] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[15] 王维军,周宁全,王超. CT定位微创徒手穿刺软通道技术治疗中等量高血压脑出血68例[J]. 山东大学学报(医学版), 2017, 55(5): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[3] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[4] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[5] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[6] 丁玲1,2, 巩会平1,杜贻萌1,王欣1,张岩3,王旭平2,鹿庆华1. SIRT3 siRNA对ox-LDL刺激的人主动脉内皮细胞ICAM-1、E-selectin表达的影响[J]. 山东大学学报(医学版), 2014, 52(4): 43 -48 .
[7] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[8] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[9] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[10] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .