Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (9): 57-63.doi: 10.6040/j.issn.1671-7554.0.2021.0953
Previous Articles Next Articles
SUN Shuyang, ZHANG Zhiyuan
CLC Number:
[1] Turajlic S, Sottoriva A, Graham T, et al. Resolving genetic heterogeneity in cancer [J]. Nat Rev Genet, 2019, 20(7): 404-416. [2] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021 [J]. Ca Cancer J Clin, 2021, 71(1): 7-33. [3] Chow LQM. Head and neck cancer [J]. N Engl J Med, 2020, 382(1): 60-72. [4] Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics [J]. Lancet, 2019, 394(10197): 521-532. [5] Motulsky AG. Drug reactions enzymes, and biochemical genetics [J]. JAMA, 1957, 165(7): 835-837. [6] Lehmann H, Ryan E. The familial incidence of low pseudocholinesterase level [J]. Lancet, 1956, 271(6934): 124. [7] Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers [J]. Can J Biochem Physiol, 1957, 35(12): 1305-1320. [8] Alving AS, Carson PE, Flanagan CL, et al. Enzymatic deficiency in primaquine-sensitive erythrocytes [J]. Science, 1956, 124(3220): 484-485. [9] Relling MV, Evans WE. Pharmacogenomics in the clinic [J]. Nature, 2015, 526(7573): 343-350. [10] 黄民. 药物基因组学与合理用药 [J]. 药学进展, 2018, 42(4): 241-242. HUANG Min. Pharmacogenomics and rational drug use [J]. Progress in Pharmaceutical Sciences, 2018, 42(4): 241-242. [11] Earl HM, Hiller L, Vallier A-L, et al. 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer(PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial [J]. Lancet, 2019, 393(10191): 2599-2612. [12] Hehlmann R, Lauseker M, SauBele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants [J]. Leukemia, 2017, 31(11): 2398-2406. [13] Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR [J]. N Engl J Med, 2010, 362(25): 2380-2388. [14] Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer [J]. Nature, 2019, 575(7782): 299-309. [15] Kim C, Gao R, Sei E, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing [J]. Cell, 2018, 173(4): 879-893. [16] Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the rosetta stone of therapy resistance [J]. Cancer Cell, 2020, 37(4): 471-484. [17] Hong SP, Chan TE, Lombardo Y, et al. Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy [J]. Nat Commun, 2019, 10(1): 3840. [18] Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance [J]. Nature, 2017, 546(7658): 431-435. [19] Murtuza A, Bulbul A, Shen JP, et al. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer [J]. Cancer Res, 2019, 79(4): 689-698. [20] Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer [J]. N Engl J Med, 2017, 376(7): 629-640. [21] Piotrowska Z, Isozaki H, Lennerz JK, et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion [J]. Cancer Discov, 2018, 8(12): 1529-1539. [22] Tanaka K, Yu HA, Yang S, et al. Targeting aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis [J]. Cancer Cell, 2021, S1535-6108(21)00383-4. [23] D'Cruz AK, Vaish R, Kapre N, et al. Elective versus therapeutic neck dissection in node-negative oral cancer [J]. N Engl J Med, 2015, 373(6): 521-529. [24] Santuray RT, Johnson DE, Grandis JR. New therapies in head and neck cancer [J]. Trends Cancer, 2018, 4(5): 385-396. [25] Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy [J]. J Clin Oncol, 2007, 25(16): 2171-2177. [26] Kim HS, Kwon HJ, Jung I, et al. Phase II clinical and exploratory biomarker study of dacomitinib in patients with recurrent and/or metastatic squamous cell carcinoma of head and neck [J]. Clin Cancer Res, 2015, 21(3): 544-552. [27] William WN, Papadimitrakopoulou V, Lee JJ, et al. Erlotinib and the Risk of Oral Cancer: The Erlotinib Prevention of Oral Cancer(EPOC)Randomized Clinical Trial [J]. JAMA Oncol, 2016, 2(2): 209-216. [28] Hedberg ML, Peyser ND, Bauman JE, et al. Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for -altered head and neck cancer [J]. J Exp Med, 2019, 216(2): 419-427. [29] Adkins D, Ley J, Neupane P, et al. Palbociclib and cetuximab in platinum-resistant and in cetuximab-resistant human papillomavirus-unrelated head and neck cancer: a multicentre, multigroup, phase 2 trial [J]. Lancet Oncol, 2019, 20(9): 1295-1305. [30] Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck(KEYNOTE-048): a randomised, open-label, phase 3 study [J]. Lancet, 2019, 394(10212): 1915-1928. [31] Sacco AG, Chen R, Worden FP, et al. Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial [J]. Lancet Oncol, 2021, 22(6): 883-892. [32] Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck(KEYNOTE-012): an open-label, multicentre, phase 1b trial [J]. Lancet Oncol, 2016, 17(7): 956-965. [33] Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas [J]. Nature, 2015, 517(7536): 576-582. [34] McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future [J]. Cell, 2017, 168(4): 613-628. [35] Elkabets M, Pazarentzos E, Juric D, et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas [J]. Cancer Cell, 2015, 27(4): 533-546. [36] Shu S, Wu HJ, Ge JY, et al. Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer [J]. Mol Cell, 2020, 78(6): 1096-1113. [37] Amodio V, Yaeger R, Arcella P, et al. EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer [J]. Cancer Discov, 2020, 10(8): 1129-1139. [38] Zhou R, Shi C, Tao W, et al. Analysis of mucosal melanoma whole-genome landscapes reveals clinically relevant genomic aberrations [J]. Clin Cancer Res, 2019, 25(12): 3548-3560. [39] Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response [J]. Nat Med, 2015, 21(11): 1318-1325. [40] Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives [J]. Nat Rev Cancer, 2017, 17(12): 751-765. [41] Izumchenko E, Paz K, Ciznadija D, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors [J]. Ann Oncol, 2017, 28(10): 2595-2605. [42] Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J]. Nature, 2012, 483(7391): 603-607. [43] Haibe-Kains B, El-Hachem N, Birkbak NJ, et al. Inconsistency in large pharmacogenomic studies [J]. Nature, 2013, 504(7480): 389-393. [44] Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets [J]. Nature, 2015, 528(7580): 84-87. [45] Haverty PM, Lin E, Tan J, et al. Reproducible pharmacogenomic profiling of cancer cell line panels [J]. Nature, 2016, 533(7603): 333-337. [46] Bruna A, Rueda OM, Greenwood W, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds [J]. Cell, 2016, 167(1): 260-274.. [47] Qiu Z, Li H, Zhang Z, et al. A pharmacogenomic landscape in human liver cancers [J]. Cancer Cell, 2019, 36(2):179-193. [48] Sa JK, Hwang JR, Cho Y-J, et al. Pharmacogenomic analysis of patient-derived tumor cells in gynecologic cancers [J]. Genome Biol, 2019, 20(1): 253. [49] Sa JK, Hong JY, Lee I-K, et al. Comprehensive pharmacogenomic characterization of gastric cancer [J]. Genome Med, 2020, 12(1): 17. [50] Byrne AT, Alferez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts [J]. Nat Rev Cancer, 2017, 17(4): 254-268. |
[1] | WANG Ying, ZHANG Yafei, WEN Yong. YAP gene overexpression promotes tongue squamous carcinoma growth through PI3K/AKT/mTOR signaling pathway [J]. Journal of Shandong University (Health Sciences), 2020, 58(2): 21-28. |
[2] | CHEN Xiyan, WANG Qi, GU Weiting, WEN Yong. Effects of TAZ knockdown on the proliferation and apoptosis of TSCC cell line CAL27 and the molecular mechanism [J]. Journal of Shandong University (Health Sciences), 2018, 56(10): 79-85. |
[3] | MA Xue, ZHANG Bin, HAN Chunyao, LIU Mingyuan, HAO Lijing, GE Shuqing, XUE Zhongyuan. Down-regulation of α-catulin inhibits the invasion and migration of human tongue squamous cancer cell line Tscca in vitro [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(6): 12-15. |
[4] | HAO Lijing, GE Shuqing, WANG Shufen, ZHENG Wenjiao, ZHANG Bin. Effects of sorafenib on the proliferation and apoptosis of cisplatin-resistant tongue cancer cells in vitro [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(1): 17-21. |
[5] | WANG Hua-chun1, HUANG Sheng-yun2, XIE Hong-jun1, LIU Wen-lei1, ZHANG Jie3, ZHANG Dong-sheng1,2. Expression and clinical significance of protein tyrosine phosphatase SHP-2 in oral squamous cell carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(2): 82-85. |
[6] | LIU Shuo-shuo, ZHANG Bin, GUO Ting-ting, DONG Xiao-ting. Effect of PTEN transfection on human tongue squamous carcinoma cell line SCC-4 and its mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(1): 42-45. |
[7] | ZHANG Dong1, HE Hai-xian2, DONG Li-xin3, CHEN Zhenggang4, WANG Yu-min1, LIU Shao-hua1. Expression of Galectin-1 in squamous cell carcinoma of the tongue and correlation with clinicopathological parameters [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(11): 138-. |
[8] | ZHANG Yan-sheng,LIU Shao-hua,WEI Feng-cai,SUN Shan-zhen. Expressions of HGF and its receptor in oral squamous cell carcinoma and neck lymph nodes [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(4): 420-423. |
[9] | WANG Zhen-guang,SUN Shan-zhen,SHI Lin,WANG Dong-guan. Gene expression regulation between tongue squamous cell carcinoma cell line Tca-8113 and normal tongue mucosa fibroblasts [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(5): 446-449. |
[10] | HUANG Sheng-yun,ZHANG Dong-sheng,ZHANG Shi-zhou,LIU Gui-jun,ZHAO Yue-ran,WANG Lai-cheng,LIU Yi-qing. Construction of recombination expression vector pIRES-CD and pIRES-TK and their expression in ACC-2 cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(2): 117-123. |
[11] | . Expression and methylation of p16 in carcinoma ex pleomorphic adenoma of the parotid gland [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(11): 108-110. |
[12] | LIU Guanyi, YANG Liyuan, FU Zhentao, XU Aiqiang, GUO Xiaolei. Incidence and mortality of oral cancer in Shandong Province in 2014 [J]. Journal of Shandong University (Health Sciences), 2019, 57(7): 102-107. |
|