Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 17-40.doi: 10.6040/j.issn.1671-7554.0.2025.0512
• Clinical Research • Previous Articles
YANG Fan1,2,3
CLC Number:
| [1] Teoh JR, Dong J, Zuo XW, et al. Advancing healthcare through multimodal data fusion: a comprehensive review of techniques and applications[J]. Peer J Comput Sci, 2024, 10: e2298. doi:10.7717/peerj-cs.2298 [2] Krones F, Marikkar U, Parsons G, et al. Review of multimodal machine learning approaches in healthcare[J]. Inf Fusion, 2025, 114: 102690. doi:10.1016/j.inffus.2024.102690 [3] Kumar S, Rani S, Sharma S, et al. Multimodality fusion aspects of medical diagnosis: a comprehensive review[J]. Bioengineering, 2024, 11(12): 1233. doi:10.3390/bioengineering11121233 [4] Chaabene S, Boudaya A, Bouaziz B, et al. An overview of methods and techniques in multimodal data fusion with application to healthcare[J]. Int J Data Sci Anal, 2025. doi:10.1007/s41060-025-00715-0 [5] Wang T, Shao W, Huang Z, et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification[J]. Nat Commun, 2021, 12(1): 3445. doi: 10.1038/s41467-021-23774-w [6] Shaik T, Tao XH, Li L, et al. A survey of multimodal information fusion for smart healthcare: mapping the journey from data to wisdom[J]. Inf Fusion, 2024, 102: 102040. doi:10.1016/j.inffus.2023.102040 [7] Lyu W, Dong X, Wong R, et al. A multimodal transformer: fusing clinical notes with structured EHR data for interpretable in-hospital mortality prediction[J]. AMIA Annu Symp Proc, 2023, 2022: 719-728. [8] Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review[J]. Brief Bioinform, 2022, 23(2): bbab569. doi:10.1093/bib/bbab569 [9] Zheng Y, Conrad RD, Green EJ, et al. Graph attention-based fusion of pathology images and gene expression for prediction of cancer survival[J]. IEEE Trans Med Imaging, 2024, 43(9): 3085-3097. [10] Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects[J]. Proc IEEE, 2015, 103(9): 1449-1477. [11] Krones F, Marikkar U, Parsons G, et al. Review of multimodal machine learning approaches in healthcare[J]. Inf Fusion, 2025, 114: 102690. doi:10.1016/j.inffus.2024.102690 [12] Han X, Chen S, Fu Z, et al. Multimodal fusion and vision-language models: a survey for robot vision[EB/OL].(2025-04-03)[2025-04-26].https://arxiv.org/abs/2504.02477v2 [13] 张虎成, 李雷孝, 刘东江. 多模态数据融合研究综述[J]. 计算机科学与探索, 2024, 18(10): 2501-2520. ZHANG Hucheng, LI Leixiao, LIU Dongjiang. Survey of multimodal data fusion research[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2501-2520. [14] 潘梦竹, 李千目, 邱天. 深度多模态表示学习的研究综述[J]. 计算机工程与应用, 2023, 59(2): 48-64. PAN Mengzhu, LI Qianmu, QIU Tian. Survey of research on deep multimodal representation learning[J]. Computer Engineering and Applications, 2023, 59(2): 48-64. [15] 任泽裕, 王振超, 柯尊旺, 等. 多模态数据融合综述[J]. 计算机工程与应用, 2021, 57(18): 49-64. REN Zeyu, WANG Zhenchao, KE Zunwang, et al. Survey of multimodal data fusion[J]. Computer Engineering and Applications, 2021, 57(18): 49-64. [16] Rajendran S, Pan W, Sabuncu MR, et al. Learning across diverse biomedical data modalities and cohorts: challenges and opportunities for innovation[J]. Patterns(N Y), 2024, 5(2): 100913. doi: 10.1016/j.patter.2023.100913 [17] Wang T, Li F, Zhu L, et al. Cross-modal retrieval: a systematic review of methods and future directions[EB/OL].(2025-04-17)[2025-04-26]. https://ieeexplore.ieee.org/abstract/document/10843094/ [18] Sarraf A, Azhdari M, and Sarraf S. A comprehensive review of deep learning architectures for computer vision applications[J]. ASRJETS, 2021, 77(1): 1-29. [19] Garg M, Ghosh D, Pradhan PM. Multiscaled multi-head attention-based video transformer network for hand gesture recognition[J]. IEEE Signal Process Lett, 2023, 30: 80-84. doi:10.1109/LSP.2023.3241857 [20] Kumar S, Sharma S, Megra KT. Transformer enabled multi-modal medical diagnosis for tuberculosis classification[J]. J Big Data, 2025, 12(1): 5. doi:10.1186/s40537-024-01054-w [21] Zhou HY, Yu Y, Wang C, et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics[J]. Nat Biomed Eng, 2023, 7(6): 743-755. [22] Nguyen HH, Blaschko MB, Saarakkala S. Clinically-inspired multi-agent transformers for disease trajectory forecasting from multimodal data[J]. IEEE Trans Med Imaging, 2024, 43(1): 529-541. [23] Khader F, Kather JN, Müller-Franzes G, et al. Medical transformer for multimodal survival prediction in intensive care: integration of imaging and non-imaging data[J]. Sci Rep, 2023, 13(1): 10666. doi: 10.1038/s41598-023-37835-1 [24] Valous NA, Popp F, Zörnig I, et al. Graph machine learning for integrated multi-omics analysis[J]. Br J Cancer, 2024, 131(2): 205-211. [25] Guo D, Shao Y, Cui Y, et al. Graph attention tracking[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9543-9552. http://openaccess.thecvf.com/content/CVPR2021/html/Guo_Graph_Attention_Tracking_CVPR_2021_paper.html [26] Zheng Y, Gindra RH, Green EJ, et al. A graph-transformer for whole slide image classification[J]. IEEE Trans Med Imaging, 2022, 41(11): 3003-3015. [27] Zheng Y, Conrad RF, Green EJ, et al. Graph attention-based fusion of pathology images and gene expression for prediction of cancer survival[J]. IEEE Trans Med Imaging, 2024, 43(9): 3085-3097. [28] Huang SC, Pareek A, Jensen M, et al. Self-supervised learning for medical image classification: a systematic review and implementation guidelines[J]. NPJ Digit Med, 2023, 6(1): 74. doi:10.1038/s41746-023-00811-0 [29] Zhang Y, Jiang H, Miura Y, et al. Contrastive learning of medical visual representations from paired images and text[J]. PMLR, 2022: 2-25. [30] Wang Z, Wu Z, Agarwal D, et al. MedCLIP: contrastive learning from unpaired medical images and text[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2022. https://pmc.ncbi.nlm.nih.gov/articles/PMC11323634/ [31] Taleb A, Lippert C, Klein T, et al. Multimodal self-supervised learning for medical image analysis. In Feragen A, Sommer S, Schnabel J(Ed.)Information Processing in Medical Imaging. Cham: Springer, 2021: 661-673. [32] Zong Y, Aodha OM, Hospedales TM. Self-supervised multimodal learning: a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2025, 47(7): 5299-5318. [33] Ghassemi M, Pimentel M, Naumann T, et al. A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data[J]. Proc AAAI Conf Artif Intell, 2015: 446-453. [34] AlSaad R, Abd-Alrazaq A, Boughorbel S, et al. Multimodal large language models in health care: applications, challenges, and future outlook[J]. J Med Internet Res, 2024, 26: e59505. doi:10.2196/59505 [35] Gygi JP, Konstorum A, Pawar S, et al. A supervised Bayesian factor model for the identification of multi-omics signatures[J]. Bioinformatics, 2024, 40(5): btae202. doi:10.1093/bioinformatics/btae202 [36] Suter P, Dazert E, Kuipers J, et al. Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model[J]. PLoS Comput Biol, 2022, 18(9): e1009767. doi:10.1371/journal.pcbi.1009767 [37] Samorodnitsky S, Wendt CH, Lock EF. Bayesian simultaneous factorization and prediction using multi-omic data[J]. Comput Stat Data Anal, 2024, 197: 107974. doi:10.1016/j.csda.2024.107974 [38] Ghosal S, Chen Q, Pergola G, et al. A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space[J]. Neuroimage, 2021, 238: 118200. doi:10.1016/j.neuroimage.2021.118200 [39] Han Y, Lam JCK, Li VOK, et al. Interpretable AI-driven causal inference to uncover the time-varying effects of PM2.5 and public health interventions on COVID-19 infection rates[J]. Humanit Soc Sci Commun, 2024, 11(1): 1713. doi:10.1057/s41599-024-04202-y [40] Daunhawer I, Sutter TM, Marcinkevi cs R, et al. Self-supervised disentanglement of modality-specific and shared factors improves multimodal generative models[J]. Pattern Recognition, 2021, 12544: 459-473. doi: 10.1007/978-3-030-71278-5_33 [41] Argelaguet R, Arnol D, Bredikhin D, et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data[J]. Genome Biol, 2020, 21(1): 111. doi:10.1186/s13059-020-02015-1 [42] Shen R, Mo Q, Schultz N, et al. Integrative subtype discovery in glioblastoma using iCluster[J]. PLoS One, 2012, 7(4): e35236. doi:10.1371/journal.pone.0035236 [43] Xie H, Li J, Xue H. A survey of dimensionality reduction techniques based on random projection[EB/OL].(2018-05-3)[2025-04-26]. https://doi.org/10.48550/arXiv.1706.04371 [44] Mirabnahrazam G, Ma D, Lee S, et al. Machine learning based multimodal neuroimaging genomics dementia score for predicting future conversion to Alzheimers disease[J]. J Alzheimers Dis, 2022, 87(3): 1345-1365. [45] Lock EF, Hoadley KA, Marron JS, et al. Joint and individual variation explained(JIVE)for integrated analysis of multiple data types[J]. Ann Appl Stat, 2013, 7(1): 523-542. [46] Yang Y, Ma C. Estimating shared subspace with AJIVE: the power and limitation of multiple data matrices[EB/OL].(2025-02-15)[2025-04-26]. https://doi.org/10.48550/arXiv.2501.09336 [47] Gordon SL, Jahn E, Mazaheri B, et al. Identification of mixtures of discrete product distributions in near-optimal sample and time complexity[C]. Proceedings of the 37th Annual Conference on Learning Theory(COLT), PMLR, 2024: 2071-2091. https://proceedings.mlr.press/v247/gordon24a.html [48] Yang J, Yu Y, Niu D, et al. ConFEDE: contrastive feature decomposition for multimodal sentiment analysis[C]. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers), 2023: 7617-7630. [49] Freund MC, Etzel JA, Braver TS. Neural coding of cognitive control: the representational similarity analysis approach[J]. Trends Cogn Sci, 2021, 25(7): 622-638. [50] Angelopoulos N, Chatzipli A, Nangalia J, et al. Bayesian networks elucidate complex genomic landscapes in cancer[J]. Commun Biol, 2022, 5(1): 306. doi:10.1038/s42003-022-03243-w [51] Yan HX, Weng DW, Li DG, et al. Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration[J]. Brief Bioinform, 2024, 25(3): bbae184. doi:10.1093/bib/bbae184 [52] Nelson Hayes C, Nakahara H, Ono A, et al. From omics to multi-omics: a review of advantages and tradeoffs[J]. Genes, 2024, 15(12): 1551. doi:10.3390/genes15121551 [53] Forés-Martos J, Forte A, García-Martínez J, et al. A trans-omics comparison reveals common gene expression strategies in four model organisms and exposes similarities and differences between them[J]. Cells, 2021, 10(2): 334. doi:10.3390/cells10020334 [54] Liu J, Cen X, Yi C, et al. Challenges in AI-driven biomedical multimodal data fusion and analysis[J]. Genomics Proteomics Bioinformatics, 2025, 23(1): qzaf011. doi: 10.1093/gpbjnl/qzaf011 [55] Jia Z, Giehl RFH, Meyer RC, et al. Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen[J]. Nat Commun, 2019, 10(1): 2378. doi: 10.1038/s41467-019-10331-9 [56] Yip SS, Aerts HJ. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166. [57] Krishna A, Kurian NC, Patil A, et al. PathoGen-X: a cross-modal genomic feature trans-align network for enhanced survival prediction from histopathology images[C]. 2025 IEEE 22nd International Symposium on Biomedical Imaging, IEEE. doi: 10.1109/ISBI60581.2025.10981028 [58] Yan Y, Yao XJ, Wang SH, et al. A survey of computer-aided tumor diagnosis based on convolutional neural network[J]. Biology(Basel), 2021, 10(11): 1084. doi:10.3390/biology10111084 [59] Butler L, Karabayir I, Samie Tootooni M, et al. Image and structured data analysis for prognostication of health outcomes in patients presenting to the ED during the COVID-19 pandemic[J]. Int J Med Inform, 2021, 158: 104662. doi:10.1016/j.ijmedinf.2021.104662 [60] LI Y, Hajj HA, Conze PH, et al. Multimodal information fusion for the diagnosis of diabetic retinopathy[EB/OL].(2023-03-20)[2025-04-26]. https://arxiv.org/abs/2304.00003 [61] Luo H, Huang JS, Ju HR, et al. Multimodal multi-instance evidence fusion neural networks for cancer survival prediction[J]. Sci Rep, 2025, 15(1): 10470. doi:10.1038/s41598-025-93770-3 [62] Li T, Zhou X, Xue J, et al. Cross-modal alignment and contrastive learning for enhanced cancer survival prediction[J]. Comput Methods Programs Biomed, 2025, 263: 108633. doi:10.1016/j.cmpb.2025.108633 [63] Schneider L, Laiouar-Pedari S, Kuntz S, et al. Integration of deep learning-based image analysis and genomic data in cancer pathology: a systematic review[J]. Eur J Cancer, 2022, 160: 80-91. doi:10.1016/j.ejca.2021.10.007 [64] Zheng T, Hu W, Wang H, et al. MRI-based texture analysis for preoperative prediction of BRAF V600E mutation in papillary thyroid carcinoma[J]. J Multidiscip Healthc, 2023, 16:1-10. doi: 10.2147/JMDH.S393993 [65] Yu J, Ma T, Chen F, et al. Task-driven framework using large models for digital pathology[J]. Commun Biol, 2024, 7(1): 1619. doi:10.1038/s42003-024-07303-1 [66] Chen RJ, Lu MY, Williamson DFK, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning[J]. Cancer Cell, 2022, 40(8): 865-878. [67] Brussee S, Buzzanca G, Schrader AMR, et al. Graph neural networks in histopathology: emerging trends and future directions[J]. Med Image Anal, 2025, 101: 103444. doi:10.1016/j.media.2024.103444 [68] Ding KX, Zhou M, Metaxas DN, et al. Pathology-and-genomics multimodal transformer for survival outcome prediction[M] //Medical Image Computing and Computer Assisted Intervention- MICCAI 2023. Cham: Springer Nature Switzerland, 2023: 622-631. doi:10.1007/978-3-031-43987-2_60 [69] Qi YJ, Su GH, You C, et al. Radiomics in breast cancer: current advances and future directions[J]. Cell Rep Med, 2024, 5(9): 101719. doi: 10.1016/j.xcrm.2024.101719 [70] Ehrenstein V, Kharrazi H, Lehmann H, et al. Obtaining data from electronic health records[EB/OL].(2025-04-18)[2025-04-26]. https://www.ncbi.nlm.nih.gov/books/NBK551878/ [71] Patharkar A, Cai FL, Al-Hindawi F, et al. Predictive modeling of biomedical temporal data in healthcare applications: review and future directions[J]. Front Physiol, 2024, 15: 1386760. doi:10.3389/fphys.2024.1386760 [72] Zhan X, Humbert-Droz M, Mukherjee P, et al. Structuring clinical text with AI: old versus new natural language processing techniques evaluated on eight common cardiovascular diseases[EB/OL].(2025-04-18)[2025-04-26]. https://www.cell.com/patterns/fulltext/S2666-3899(21)00122-7 [73] Chen XL, Xie HR, Tao XH, et al. Artificial intelligence and multimodal data fusion for smart healthcare: topic modeling and bibliometrics[J]. Artif Intell Rev, 2024, 57(4): 91. doi:10.1007/s10462-024-10712-7 [74] Shajari S, Kuruvinashetti K, Komeili A, et al. The emergence of AI-based wearable sensors for digital health technology: a review[J]. Sensors, 2023, 23(23): 9498. doi:10.3390/s23239498 [75] Lih OS, Jahmunah V, Palmer EE, et al. EpilepsyNet: novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population[J]. Comput Biol Med, 2023, 164: 107312. doi:10.1016/j.compbiomed.2023.107312 [76] Deniz-Garcia A, Fabelo H, Rodriguez-Almeida AJ, et al. Quality, usability, and effectiveness of mHealth apps and the role of artificial intelligence: current scenario and challenges[J]. J Med Internet Res, 2023, 25: e44030. doi:10.2196/44030 [77] Basak H, Yin ZZ. Semi-supervised domain adaptive medical image segmentation through consistency regularized disentangled contrastive learning[M] //Medical Image Computing and Computer Assisted Intervention-MICCAI 2023. Cham: Springer Nature Switzerland, 2023: 260-270. doi:10.1007/978-3-031-43901-8_25 [78] Zhao F, Zhang CC, Geng BC. Deep multimodal data fusion[J]. ACM Comput Surv, 2024, 56(9): 1-36. [79] Li S, Tang H. Multimodal alignment and fusion: a survey[EB/OL].(2024-11-26)[2025-04-26]. https://arxiv.org/abs/2411.17040 [80] Hangaragi S, Neelima N, Jegdic K, et al. Integrated fusion approach for multi-class heart disease classification through ECG and PCG signals with deep hybrid neural networks[J]. Sci Rep, 2025, 15(1): 8129. doi:10.1038/s41598-025-92395-w [81] Domingo J, Minaeva M, Morris JA, et al. Non-linear transcriptional responses to gradual modulation of transcription factor dosage[J]. bioRxiv, 2024. doi: 10.1101/2024.03.01.582837 [82] Han GR, Goncharov A, Eryilmaz M, et al. Machine learning in point-of-care testing: innovations, challenges, and opportunities[J]. Nat Commun, 2025, 16(1): 3165. doi:10.1038/s41467-025-58527-6 [83] Kawahara D, Nagata Y. T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks[J]. Rep Pract Oncol Radiother, 2021, 26(1): 35-42. [84] Kang Z, He Y, Wang J, et al. Efficient multi-model fusion with adversarial complementary representation learning[EB/OL].(2025-04-18)[2025-05-26]. https://ieeexplore.ieee.org/abstract/document/10650588/ [85] Yoon S, Byun S, Jung K. Multimodal speech emotion recognition using audio and text[EB/OL].(2025-04-18)[2025-05-26]. https://ieeexplore.ieee.org/abstract/document/8639583/ [86] Höhn J, Krieghoff-Henning E, Jutzi TB, et al. Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification[J]. Eur J Cancer, 2021, 149: 94-101. doi:10.1016/j.ejca.2021.02.032 [87] Arnold C, Küpfer A. Alignment helps make the most of multimodal data[EB/OL].(2024-05-14)[2025-04-26]. https://arxiv.org/abs/2405.08454 [88] Yang H, Zhou HY, Li C, et al. Multimodal self-supervised learning for lesion localization[EB/OL].(2024-08-20)[2025-04-26]. https://ieeexplore.ieee.org/abstract/document/10635268/ [89] Lobato-Delgado B, Priego-Torres B, Sanchez-Morillo D. Combining molecular, imaging, and clinical data analysis for predicting cancer prognosis[J]. Cancers, 2022, 14(13): 3215. doi:10.3390/cancers14133215 [90] Chen RJ, Lu MY, Wang J, et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis[J]. IEEE Trans Med Imaging, 2022, 41(4): 757-770. [91] Wijethilake N, Islam M, Ren HL. Radiogenomics model for overall survival prediction of glioblastoma[J]. Med Biol Eng Comput, 2020, 58(8): 1767-1777. [92] Magbanua MJM, Li W, vant Veer LJ. Integrating imaging and circulating tumor DNA features for predicting patient outcomes[J]. Cancers(Basel), 2024, 16(10): 1879. doi:10.3390/cancers16101879 [93] Niu W, Yan J, Hao M, et al. MRI transformer deep learning and radiomics for predicting IDH wild type TERT promoter mutant gliomas[J]. NPJ Precis Oncol, 2025, 9(1): 89. doi:10.1038/s41698-025-00884-y [94] Angelopoulos N, Chatzipli A, Nangalia J, et al. Bayesian networks elucidate complex genomic landscapes in cancer[J]. Commun Biol, 2022, 5(1): 306. doi:10.1038/s42003-022-03243-w [95] Herawan M, Adriansjah R. Prostate specific antigen level and gleason score in Indonesian prostate cancer patients[EB/OL].(2025-04-18)[2025-04-26]. https://repository.unar.ac.id/jspui/handle/123456789/8814 [96] Kabir Anaraki A, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms[J]. Biocybern Biomed Eng, 2019, 39(1): 63-74. |
| [1] | TANG Yuning, PAN Tianyue, DONG Zhihui, FU Weiguo. Research progress of deep learning in automatic segmentation of aortic images [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 66-73. |
| [2] | Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6. |
| [3] | LIU Yajun, YUAN Qiang, WU Jingye, HAN Xiaoguang, LANG Zhao, ZHANG Yong. Preliminary exploration of automatic planning of lumbar pedicle screws based on cone-beam CT in 130 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 80-89. |
| [4] | Bingjie LIN,Meiyun WANG. Research status and development prospect of deep learning in medical imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 21-29. |
| [5] | Guyue ZHAO,Jin SHANG,Yang HOU. Advances in the application of artificial intelligence in coronary computed tomography angiography [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 30-35. |
| [6] | Ziliang XU,Minwen ZHENG. Innovation and challenge of imaging artificial intelligence in medical field [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 7-12, 20. |
| [7] | WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96. |
| [8] | Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73. |
| [9] | Haotian LIN,Longhui LI,Jingjing CHEN. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16. |
| [10] | Yi QU,Huankai ZHANG,Xian SONG,Baorui CHU. Research progress of artificial intelligence diagnosis system in retinal diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 39-44. |
| [11] | Carol Y. Cheung,Anran RAN. Artificial intelligence deep learning in glaucoma imaging: current progress and future prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 24-32, 38. |
|
||