Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (8): 1-16.doi: 10.6040/j.issn.1671-7554.0.2025.0568
• Big DataEnabled, AI Foundation ModelDriven Multimodal Cohort Design and Analysis-Expert Review •
XUE Fuzhong1,2,3
CLC Number:
| [1] Moor M, Banerjee O, Abad ZSH, et al. Foundation models for generalist medical artificial intelligence[J]. Nature, 2023, 616(7956): 259-265. [2] Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240. [3] Huang KX, Altosaar J, Ranganath R. ClinicalBERT: modeling clinical notes and predicting hospital readmission[EB/OL].(2020-11-29)[2025-05-15]. https://arxiv.org/abs/1904.05342 [4] Peng YF, Yan SK, Lu ZY. Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets[C] //Proceedings of the 18th BioNLP Workshop and Shared Task. Florence, Italy: Stroudsburg, PA, USAACL, 2019: 58-65. [5] Gu Y, Tinn R, Cheng H, et al. Domain-specific language model pretraining for biomedical natural language processing[J]. ACM Trans Comput Healthcare, 2022, 3(1): 1-23. [6] Shin HC, Zhang Y, Bakhturina E, et al. BioMegatron: larger biomedical domain language model[EB/OL].(2020-10-14)[2025-05-15]. https://arxiv.org/abs/2010.06060 [7] Yang X, Pournejatian NM, Shin HC, et al. GatorTron: a large clinical language model to unlock patient information from unstructured electronic health records[EB/OL].(2022-03-14)[2025-05-01]. https://arxiv.org/abs/2203.03540v2 [8] Peng C, Yang X, Chen AK, et al. A study of generative large language model for medical research and healthcare[J]. NPJ Digit Med, 2023, 6(1): 210. doi:10.1038/s41746-023-00958-w [9] Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge[J]. Nature, 2023, 620(7972): 172-180. [10] Radford A, Kim JW, Hallacy C, et al. Learning transferable visual models from natural language supervision[EB/OL].(2021-02-26)[2025-05-15]. https://arxiv.org/abs/2103.00020 [11] Wang ZF, Wu ZB, Agarwal D, et al. MedCLIP: contrastive learning from unpaired medical images and text[J]. Proc Conf Empir Methods Nat Lang Process, 2022, 2022: 3876-3887. doi:10.18653/v1/2022.emnlp-main.256 [12] Feliandra ZB, Khadijah S, Rachmadi MF, et al. Classification of stroke and non-stroke patients from human body movements using smartphone videos and deep neural networks[C] //2022 International Conference on Advanced Computer Science and Information Systems(ICACSIS). Depok, Indonesia: IEEE, 2022: 187-192. [13] Qiu ZB, Wang HX, Liao CB, et al. Sound recognition of harmful bird species related to power grid faults based on VGGish transfer learning[J]. J Electr Eng Technol, 2023, 18(3): 2447-2456. [14] Umirzakova S, Ahmad S, Mardieva S, et al. Deep learning-driven diagnosis: a multi-task approach for segmenting stroke and Bells palsy[J]. Pattern Recognit, 2023, 144: 109866. doi:10.1016/j.patcog.2023.109866 [15] Bannur S, Hyland S, Liu QC, et al. Learning to exploit temporal structure for biomedical vision-language processing[C] //2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver, BC, Canada: IEEE, 2023: 15016-15027. [16] Boecking B, Usuyama N, Bannur S, et al. Making the most of text semantics to improve biomedical vision—language processing[C] //Computer Vision—ECCV 2022. Switzerland: Springer Nature, 2022: 1-21. [17] Pearl, J. Causality: models, reasoning, and inference[M]. Cambridge, UK: Cambridge University Press, 2000. [18] Nomura A, Takeji Y, Shimojima M, et al. Digitalomics: towards artificial intelligence/machine learning-based precision cardiovascular medicine[J]. Circ J, 2025. doi:10.1253/circj.CJ-24-0865 [19] Balasubramaniam NK, Penberthy S, Fenyo D, et al. Digitalomics-digital transformation leading to omics insights[J]. Expert Rev Proteomics, 2024, 21(9/10): 337-344. [20] Tamura Y, Nomura A, Kagiyama N, et al. Digitalomics, digital intervention, and designing future: the next frontier in cardiology[J]. J Cardiol, 2024, 83(5): 318-322. [21] Sameh A, Rostami M, Oussalah M, et al. Digital phenotypes and digital biomarkers for health and diseases: a systematic review of machine learning approaches utilizing passive non-invasive signals collected via wearable devices and smartphones[J]. Artif Intell Rev, 2024, 58(2): 66. doi:10.1007/s10462-024-11009-5 [22] Anderson JC, Gerbing DW. Structural equation modeling in practice: a review and recommended two-step approach[J]. Psychol Bull, 1988, 103(3): 411-423. [23] Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria[J]. Stat Med, 1989, 8(4): 431-440. [24] Rudolph KE, Williams NT, Diaz I. Practical causal mediation analysis: extending nonparametric estimators to accommodate multiple mediators and multiple intermediate confounders[J]. Biostatistics, 2024, 25(4): 997-1014. [25] Alayrac JB, Donahue J, Luc P, et al. Flamingo: a visual language model for few-shot learning[EB/OL].(2022-11-15)[2025-05-15]. https://arxiv.org/abs/2204.14198 [26] Yang ZC, Wei T, Liang Y, et al. A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images[J]. Nat Commun, 2025, 16(1): 2366. doi:10.1038/s41467-025-57587-y [27] Golovanevsky M, Eickhoff C, Singh R. Multimodal attention-based deep learning for Alzheimers disease diagnosis[J]. J Am Med Inform Assoc, 2022, 29(12): 2014-2022. [28] Wang Q, Chen K. Multi-label zero-shot human action recognition via joint latent ranking embedding[J]. Neural Netw, 2020, 122: 1-23. doi:10.1016/j.neunet.2019.09.029 [29] Yang L, Xu S, Sellergren A, et al. Advancing multimodal medical capabilities of Gemini[EB/OL].(2024-05-06)[2025-05-15]. https://arxiv.org/abs/2405.03162 [30] Oudin A, Maatoug R, Bourla A, et al. Digital phenotyping: data-driven psychiatry to redefine mental health[J]. J Med Internet Res, 2023, 25: e44502. doi:10.2196/44502 [31] Talukder AK, Schriml L, Ghosh A, et al. Diseasomics: actionable machine interpretable disease knowledge at the point-of-care[J]. PLoS Digit Health, 2022, 1(10): e0000128. doi:10.1371/journal.pdig.0000128 [32] Molina C, Prados-Suarez B. Digital phenotypes for personalized medicine[J]. Stud Health Technol Inform, 2021, 285: 141-146. doi:10.3233/SHTI210587 [33] Myszewski JJ, Klossowski E, Meyer P, et al. Validating GAN-BioBERT: a methodology for assessing reporting trends in clinical trials[J]. Front Digit Health, 2022, 4: 878369. doi:10.3389/fdgth.2022.878369 [34] Gharavi E, LeRoy NJ, Zheng GT, et al. Joint representation learning for retrieval and annotation of genomic interval sets[J]. Bioengineering, 2024, 11(3): 263. doi:10.3390/bioengineering11030263 [35] Shojaie A, Fox EB. Granger causality: a review and recent advances[J]. Annu Rev Stat Appl, 2022, 9(1): 289-319. [36] Zeng ZX, Jiang X, Neapolitan R. Discovering causal interactions using Bayesian network scoring and information gain[J]. BMC Bioinformatics, 2016, 17(1): 221. doi:10.1186/s12859-016-1084-8 [37] Heurtel-Depeiges D, Ruoss A, Veness J, et al. Compression via pre-trained transformers: a study on byte-level multimodal data[EB/OL].(2024-10-07)[2025-05-15]. https://arxiv.org/abs/2410.05078 [38] Mital N, Özyilkan E, Garjani A, et al. Neural distributed image compression using common information[EB/OL].(2021-11-10)[2025-05-15]. https://arxiv.org/abs/2106.11723 [39] Shao ZH, Wang PY, Zhu QH, et al. DeepSeekMath: pushing the limits of mathematical reasoning in open language models[EB/OL].(2024-04-27)[2025-05-15]. https://arxiv.org/abs/2402.03300 [40] Liao SY, Chen J, Wang YZ, et al. Embedding compression with isotropic iterative quantization[J]. Proc AAAI Conf Artif Intell, 2020, 34(5): 8336-8343. [41] Gomes C, Brunschwiler T. Neural embedding compre-ssion for efficient multi-task earth observation modelling[C] //IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. Athens, Greece: IEEE, 2024: 8268-8273. [42] Javed HT, Khan KU, Cheema MF, et al. Instance-based lossless summarization of knowledge graph with optimized triples and corrections(IBA-OTC)[J]. IEEE Access, 2023, 12: 5584-5604. |
| [1] | GONG Zhuo, ZHANG Minmin, WANG Zhiping. Influence of abortion and family heredity history on the risk of uterine leiomyomas [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(9): 100-104. |
| [2] | AN Ning,LI Deng-xin,CHEN Tong,ZHANG Jian-ye. A Meta-analysis between the helicobacter pylori infection and gastric carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(4): 423-426. |
|
||