Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (9): 30-36.doi: 10.6040/j.issn.1671-7554.0.2021.0924

Previous Articles     Next Articles

Immunomodulatory effects of bile acid in hepatointestinal diseases

ZHANG Zhaoying, MA Chunhong   

  1. School of Basic Medicine, Shandong University, Jinan 250012, Shandong, China
  • Published:2021-10-15

Abstract: Bile acid, the final product of cholesterol catabolism in liver and the main component of bile, is critical for the emulsification and absorption of lipids. Dysregulation of bile acid metabolism is closely related to various hepatic and intestinal diseases, including hepatocellular carcinoma and colorectal cancer. At present, the clinical drugs targeting bile acid are widely utilized. Immune cells play an important role in the process of hepatointestinal diseases. Bile acid is closely related to liver and intestine immune homeostasis, affecting the differentiation and function of various immune cells, and thus affecting the occurrence and development of diseases. In this paper, we will review the regulation effect of bile acid on hepatointestinal immune cells in order to develop new therapeutic methods for hepatointestinal diseases by using bile acid.

Key words: Bile acid, Bile acid receptor, Hepatointestinal inflammation, Immune homeostasis, Immune cells

CLC Number: 

  • R575.203
[1] Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota [J]. Gut Microbes, 2020, 11(2): 158-171.
[2] Frank GS, Michael T, Peter LMJ. Bile acid receptors as targets for drug development [J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1): 55-67.
[3] Schubert K, Olde Damink SWM, von Bergen M, et al. Interactions between bile salts, gut microbiota, and hepatic innate immunity [J]. Immunol Rev, 2017, 279(1): 23-35.
[4] Jiang Y, Iakova P, Jin J, et al. Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer [J]. Hepatology, 2013, 57(3): 1098-1106.
[5] Kim I, Morimura K, Shah Y, et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice [J]. Carcinogenesis, 2007, 28(5): 940-946.
[6] Fu T, Coulter S, Yoshihara E, et al. FXR regulates intestinal cancer stem cell proliferation [J]. Cell, 2019, 176(5): 1098-1112.
[7] Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial [J]. Lancet, 2019, 394(10215): 2184-2196.
[8] Reich M, Klindt C, Deutschmann K, et al. Role of the G protein-coupled bile acid receptor TGR5 in liver damage [J]. Dig Dis, 2017, 35(3): 235-240.
[9] Yang F, Mao C, Guo L, et al. Structural basis of GPBAR activation and bile acid recognition [J]. Nature, 2020, 587(7834): 499-504.
[10] Xie G, Wang X, Liu P, et al. Distinctly altered gut microbiota in the progression of liver disease [J]. Oncotarget, 2016, 7(15): 19355-19366.
[11] Xie G, Wang X, Huang F, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis [J]. Int J Cancer, 2016, 139(8): 1764-1775.
[12] Bajaj JS, Kakiyama G, Zhao D, et al. Continued alcohol misuse in human cirrhosis is associated with an impaired gut-liver axis [J]. Alcohol Clin Exp Res, 2017, 41(11): 1857-1865.
[13] König A, Döring B, Mohr C, et al. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide(NTCP)in hepatocytes [J]. J Hepatol, 2014, 61(4): 867-875.
[14] Kim HY, Cho HK, Choi YH, et al. Bile acids increase hepatitis B virus gene expression and inhibit interferon-alpha activity [J]. Febs J, 2010, 277(13): 2791-2802.
[15] Li Y, Tang R, Leung PSC, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases [J]. Autoimmun Rev, 2017, 16(9): 885-896.
[16] Duboc Henri, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases [J]. Gut, 2013, 62(4): 531-539.
[17] Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer [J]. World J Surg Oncol, 2014, 12: 164. doi:10.1186/1477-7819-12-164.
[18] Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics [J]. Acta Pharm Sin B, 2015, 5(2): 99-105.
[19] Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery [J]. Cell Host Microbe, 2021, 29(3): 408-424.
[20] Li M, Cai SY, Boyer JL. Mechanisms of bile acid mediated inflammation in the liver [J]. Mol Aspects Med, 2017, 56: 45-53. doi:10.1016/j.mam.2017.06.001.
[21] Cai SY, Ouyang X, Chen Y, et al. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response [J]. JCI Insight, 2017, 2(5): e90780.
[22] Jiang X, Lian M, Li Y, et al. The immunobiology of mucosal-associated invariant T cell(MAIT)function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7 [J]. J Autoimmun, 2018, 90: 64-75. doi:10.1016/j.jaut.2018.01.007.
[23] Gong Z, Zhou J, Zhao S, et al. Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis [J]. Oncotarget, 2016, 7(51): 83951-83963.
[24] Hao H, Cao L, Jiang C, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated Sepsis [J]. Cell Metab, 2017, 25(4): 856-867.
[25] Biagioli M, Carino A, Cipriani S, et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis [J]. J Immunol, 2017, 199(2): 718-733.
[26] Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome [J]. Immunity, 2016, 45(4): 802-816.
[27] Perino A, Pols TW, Nomura M, et al. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation [J]. J Clin Invest, 2014, 124(12): 5424-5436.
[28] Podevin P, Calmus Y, Bonnefis MT, et al. Effect of cholestasis and bile acids on interferon-induced 2',5'-adenylate synthetase and NK cell activities [J]. Gastroenterology, 1995, 108(4): 1192-1198.
[29] Xun Z, Lin J, Yu Q, et al. Taurocholic acid inhibits the response to interferon-α therapy in patients with HBeAg-positive chronic hepatitis B by impairing CD8+ T and NK cell function [J]. Cell Mol Immunol, 2021, 18(2): 461-471.
[30] Rattay S, Graf D, Kislat A, et al. Anti-inflammatory consequences of bile acid accumulation in virus-infected bile duct ligated mice [J]. PLoS One, 2018, 13(6): e0199863. doi:10.1371/journal.pone.0199863.
[31] Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis [J]. Nature, 2020, 577(7790): 410-415.
[32] Hang S, Paik D, Yao L, et al.Bile acid metabolites control T(H)17 and T(reg)cell differentiation [J]. Nature, 2019, 576(7785): 143-148.
[33] Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells [J]. Nature, 2020, 581(7809): 475-479.
[34] Pols TWH, Puchner T, Korkmaz HI, et al. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor [J]. PLoS One, 2017, 12(5): e0176715.
[35] Ichikawa R, Takayama T, Yoneno K, et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway [J]. Immunology, 2012, 136(2): 153-162.
[36] Huh JR, Leung MW, Huang P, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity [J]. Nature, 2011, 472(7344): 486-490.
[37] Ma C, Han M, Heinrich B, Fu Q, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells [J]. Science, 2018, 360(6391): 5931.
[38] Glaser F, John C, Engel B, et al. Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis [J]. J Hepatol, 2019, 71(4): 783-792.
[1] LIU Teng, MA Yingchun. Expression of ECT2 in uterine corpus endometrial carcinoma and its clinical significance based on bioinformatics database [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 63-71.
[2] QIAO Chong, WANG Tingting. Research progress of maternal-fetal immunomodulatory mechanism [J]. Journal of Shandong University (Health Sciences), 2021, 59(8): 24-31.
[3] LONG Yuhan, LUO Xia, JIANG Jie. Abnormal hyperlipidemia during pregnancy: a report of 2 cases and literature review [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 103-106.
[4] WANG Yan, ZHANG Yuhui, HU Naibo, TENG Guangshuai, ZHOU Yuan, BAI Jie. Characteristics of bone marrow immune microenvironment in patients with acute myeloid leukemia based on single-cell RNA sequencing [J]. Journal of Shandong University (Health Sciences), 2021, 59(10): 30-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[2] LYU Longfei, LI Lin, LI Shuhai, QI Lei, LU Ming, CHENG Chuanle, TIAN Hui. Application of laparoscopic fine needle catheter jejunostomy in minimally invasive McKeown resection of esophageal cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 77 -81 .
[3] SHAO Haigang, WANG Xuan, WANG Qing. Anatomy of the root canal system of mandibular first premolar in population of Shandong Province[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(9): 85 -89 .
[4] HUANG Fei,WANG Huaijing,XING Yi,GAO Wei,LI Yonggang,XING Ziying,LI Zhenzhong. Protective effects of NGF and GM1 on primary sensory neurons in SD rat with sciatic nerve injury[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(4): 332 -335 .
[5] LI Yu-liang,WANG Yong-zheng,WANG Xiao-hua,ZHANG Fu-jun,ZHU Li-dong,ZHANG Wang-ming,LI Zheng,LI Zhen-jia,ZHANG Kai-xian. I implantation combined with Gemcitabine in the treatment of advanced pancreatic cancer[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(4): 393 -396 .
[6] JIANG Bao-dong,MA Xiang-xing,WANG Qing,WANG Qian,FENG Xiao-yuan,LI Ke,YU Fu-hua. Imaging parameters of multislice spiral CT venography in cerebral veins[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(11): 1084 -1086 .
[7] TANG Fang1,2, ZHANG Yingqian3, WANG Zhiqiang4, KANG Dianmin4,
WANG Jiezhen1, XUE Fuzhong1
. A 2D minimal spanning tree model of the spatial structures of natural focal disease[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(01): 106 -110 .
[8] WANG Xiaoju1, WANG Mingming2, XU Wansu2, ZHAO Shengmei3,CUI Sunan2, LI Xiaoying2, LIU Chunhua1
. Expression of peripheral blood lymphocyte ubiquitin mRNA in chronic HBV infection with active inflammation and its clinical significance[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(02): 58 -61 .
[9] MA Li-Xin, LI Gang, SU Yu-Hang, ZHANG Cai, ZHANG Jian. Expression of NKG2D on NK cells in intracranial tumors[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(5): 88 -91 .
[10] ZHU Xiaoli1, GUO Shuling1, SU Lei1, FENG Yuxin2, YUAN Fangshu1. Extraction of total proteins from demodex and qualification of their molecular weights[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(5): 58 -62 .