Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (9): 22-29.doi: 10.6040/j.issn.1671-7554.0.2021.0937

Previous Articles     Next Articles

Application of brain organoids in investigating neurodevelopmental diseases

MA Yanyan, GONG Yaoqin   

  1. Department of Genetics, School of Basic Medical Sciences, Shandong University, Key Laboratory of Experimental Teratology, Ministry of Education, Jinan 250012, Shandong, China
  • Published:2021-10-15

Abstract: Human brain organoids are self-assembled three-dimensional aggregates derived from human pluripotent stem cells(hPSCs), including embryonic stem cells(ESCs)and induced pluripotent stem cells(iPSCs). Brain organoids display the structures that resemble defined brain regions and simulate specific change of neurological disease, and have become an excellent model for investigating human neurodevelopmental diseases in vitro. In this paper, we will review the recent advances in the generation of brain organoids and the application of brain organoids in modeling major neurodevelopmental diseases, as well as the combination of cutting-edge technologies with brain organoids.

Key words: Pluripotent stem cells, Brain organoid, Neurodevelopmental diseases, Single-cell RNA sequencing

CLC Number: 

  • R329.2
[1] Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders [J]. Lancet Psychiatry, 2017, 4(4): 339-346.
[2] Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies [J]. Neurosci Biobehav Rev, 2021, 121: 201-219. doi: 10.1016/j.neubiorev.
[3] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts [J]. Science, 1998, 282(5391): 1145-1147.
[4] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell, 2006, 126(4): 663-676.
[5] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors [J]. Cell, 2007, 131(5): 861-872.
[6] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science, 2007, 318(5858): 1917-1920.
[7] Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells [J]. Nat Biotechnol, 2001, 19(12): 1129-1133.
[8] Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling [J]. Stem Cells, 2005, 23(9): 1234-1241.
[9] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals [J]. Cell Stem Cell, 2008, 3(5): 519-532.
[10] Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling [J]. Nat Biotechnol, 2009, 27(3): 275-280.
[11] Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks [J]. Nat Protoc, 2012, 7(10): 1836-1846.
[12] Hu BY, Zhang SC. Differentiation of spinal motor neurons from pluripotent human stem cells [J]. Nat Protoc, 2009, 4(9): 1295-1304.
[13] Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells [J]. Proc Natl Acad Sci U S A, 2004, 101(34): 12543-12548.
[14] Liu Y, Liu H, Sauvey C, et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells [J]. Nat Protoc, 2013, 8(9): 1670-1679.
[15] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals [J]. Cell Stem Cell, 2008, 3(5): 519-532.
[16] Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture [J]. Nature, 2011, 472(7341): 51-56.
[17] Mariani J, Simonini MV, Palejev D, et al. Modeling human cortical development in vitro using induced pluripotent stem cells [J]. Proc Natl Acad Sci U S A, 2012, 109(31): 12770-12775.
[18] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly [J]. Nature, 2013, 501(7467): 373-379.
[19] Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells [J]. Nat Protoc, 2014, 9(10): 2329-2340.
[20] Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development [J]. Nat Protoc, 2021, 16(2): 579-602.
[21] Qian X, Jacob F, Song MM, et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor [J]. Nat Protoc, 2018, 13(3): 565-580.
[22] Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV Exposure [J]. Cell, 2016, 165(5): 1238-1254.
[23] Xiang Y, Cakir B, Park IH. Generation of regionally specified human brain organoids resembling thalamus development [J]. STAR Protoc, 2020, 1(1): 100001.
[24] Xiang Y, Cakir B, Park IH. Deconstructing and reconstructing the human brain with regionally specified brain organoids [J]. Semin Cell Dev Biol, 2021, 111: 40-51. doi: 10.1016/j.semcdb.2020.05.023.
[25] Xiang Y, Tanaka Y, Cakir B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids [J]. Cell Stem Cell, 2019, 24(3): 487-497.
[26] Bagley JA, Reumann D, Bian S,et al. Fused cerebral organoids model interactions between brain regions [J]. Nat Methods, 2017, 14(7): 743-751.
[27] Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids [J]. Nature, 2017, 545(7652): 54-59.
[28] Chen A, Guo Z, Fang L, et al. Application of fused organoid models to study human brain development and neural disorders [J]. Front Cell Neurosci, 2020, 14: 133. doi:10.3389/fncel.2020.00133.
[29] Madhavan M, Nevin ZS, Shick HE, et al. Induction of myelinating oligodendrocytes in human cortical spheroids [J]. Nat Methods, 2018, 15(9): 700-706.
[30] Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system [J]. Nat Methods, 2019, 16(11): 1169-1175.
[31] Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids(vOrganoids)model cortical development in vivo [J]. PLoS Biol, 2020, 18(5): e3000705. doi: 10.1371/journal.pbio.3000705.
[32] Lai MC, Lombardo MV, Baron-Cohen S. Autism [J]. Lancet, 2014, 383(9920): 896-910.
[33] Mariani J, Coppola G, Zhang P, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders [J]. Cell, 2015, 162(2): 375-390.
[34] Wang P, Mokhtari R, Pedrosa E, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells [J]. Mol Autism, 2017, 8: 11. doi: 10.1186/s13229-017-0124-1.
[35] Qian X, Su Y, Adam CD, et al. Sliced human cortical organoids for modeling distinct cortical layer formation [J]. Cell Stem Cell, 2020, 26(5): 766-781.
[36] Zhang W, Ma L, Yang M, et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes [J]. Genes Dev, 2020, 34(7-8): 580-597.
[37] Xu R, Brawner AT, Li S, et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome [J]. Cell Stem Cell, 2019, 24(6): 908-926.
[38] Tang XY, Xu L, Wang J, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome [J]. J Clin Invest, 2021,131(12): e135763. doi: 10.1172/JCI135763.
[39] Alcantara D, ODriscoll M. Congenital microcephaly [J]. Am J Med Genet C Semin Med Genet, 2014, 166C(2): 124-139.
[40] Devakumar D, Bamford A, Ferreira MU, et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management [J]. Lancet Infect Dis, 2018, 18(1): 1-13.
[41] Zhang W, Yang SL, Yang M, et al. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors [J]. Nat Commun, 2019, 10(1): 2612.
[42] Garcez PP, Loiola EC, Madeiro da Costa R, et al. Zika virus impairs growth in human neurospheres and brain organoids [J]. Science, 2016, 352(6287): 816-818.
[43] Cugola FR, Fernandes IR, Russo FB, et al. The Brazilian Zika virus strain causes birth defects in experimental models [J]. Nature, 2016, 534(7606): 267-271.
[44] Dang J, Tiwari SK, Lichinchi G, et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3 [J]. Cell Stem Cell, 2016, 19(2): 258-265.
[45] Krenn V, Bosone C, Burkard TR, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly [J]. Cell Stem Cell, 2021, 28(8): 1362-1379.
[46] Hagerman RJ, Berry-Kravis E, Hazlett HC, et al. Fragile X syndrome [J]. Nat Rev Dis Primers, 2017, 3: 17065. doi: 10.1038/nrdp.2017.65.
[47] Brighi C, Salaris F, Soloperto A, et al. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs [J]. Cell Death Dis, 2021, 12(5): 498.
[48] Bershteyn M, Nowakowski TJ, Pollen AA, et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia [J]. Cell Stem Cell, 2017, 20(4): 435-449.
[49] Iefremova V, Manikakis G, Krefft O, et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in wnt signaling contributing to miller-dieker syndrome [J]. Cell Rep, 2017, 19(1): 50-59.
[50] Blair JD, Hockemeyer D, Bateup HS. Genetically engineered human cortical spheroid models of tuberous sclerosis [J]. Nat Med, 2018, 24(10): 1568-1578.
[51] Mellios N, Feldman DA, Sheridan SD, et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling [J]. Mol Psychiatry, 2018, 23(4): 1051-1065.
[52] Ben Jehuda R, Shemer Y, Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9 [J]. Stem Cell Rev Rep, 2018, 14(3): 323-336.
[53] Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of tuberous sclerosis complex [J]. Mol Autism, 2020, 11(1): 16.
[54] Esk C, Lindenhofer D, Haendeler S, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant [J]. Science, 2020, 370(6519): 935-941.
[55] Fair SR, Julian D, Hartlaub AM, et al. Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development [J]. Stem Cell Reports, 2020, 15(4): 855-868.
[56] Poli D, Magliaro C, Ahluwalia A. Experimental and computational methods for the study of cerebral organoids: a review [J]. Front Neurosci, 2019, 13: 162. doi: 10.3389/fnins.2019.00162.
[57] Trujillo CA, Gao R, Negraes PD, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development [J]. Cell Stem Cell, 2019, 25(4): 558-569.
[58] Trujillo CA, Rice ES, Schaefer NK, et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment [J]. Science, 2021, 371(6530): eaax2537.
[59] Soscia DA, Lam D, Tooker AC, et al. A flexible 3-dimensional microelectrode array for in vitro brain models [J]. Lab Chip, 2020, 20(5): 901-911.
[60] Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output [J]. Nat Neurosci, 2019, 22(4): 669-679.
[61] Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex [J]. Nature, 2019, 570(7762): 523-527.
[62] Pollen AA, Bhaduri A, Andrews MG, et al. Establishing cerebral organoids as models of human-specific brain evolution [J]. Cell, 2019, 176(4): 743-756.
[63] Kanton S, Boyle MJ, He Z, et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development [J]. Nature, 2019, 574(7778): 418-422.
[64] Sawada T, Chater TE, Sasagawa Y, et al. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids [J]. Mol Psychiatry, 2020, 25(11): 2695-2711.
[65] Zhisong He, Tobias Gerber, Ashley Maynard, et al. Lineage recording reveals dynamics of cerebral organoid regionalization [J]. bioRxiv, 2020, 162032. doi: 10.1101/2020.06.19.162032.
[66] Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation [J]. Mol Psychiatry, 2020, doi: 10.1038/s41380-020-00910-4.
[1] Jian WANG,Wenjing ZHOU,Zhiyi XUE,Xiaofei LIU. Overview of glioblastoma models and development and application of brain organoids [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 74-80.
[2] CHEN Wenbiao, YU Xiangqi, DAI Yong. Different expressions of novel microRNAs of iPSCs from Alport syndrome [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(9): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Bao-dong,MA Xiang-xing,WANG Qing,WANG Qian,FENG Xiao-yuan,LI Ke,YU Fu-hua. Imaging parameters of multislice spiral CT venography in cerebral veins[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(11): 1084 -1086 .
[2] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[3] LYU Longfei, LI Lin, LI Shuhai, QI Lei, LU Ming, CHENG Chuanle, TIAN Hui. Application of laparoscopic fine needle catheter jejunostomy in minimally invasive McKeown resection of esophageal cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 77 -81 .
[4] SHAO Haigang, WANG Xuan, WANG Qing. Anatomy of the root canal system of mandibular first premolar in population of Shandong Province[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(9): 85 -89 .
[5] HUANG Fei,WANG Huaijing,XING Yi,GAO Wei,LI Yonggang,XING Ziying,LI Zhenzhong. Protective effects of NGF and GM1 on primary sensory neurons in SD rat with sciatic nerve injury[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2006, 44(4): 332 -335 .
[6] TANG Fang1,2, ZHANG Yingqian3, WANG Zhiqiang4, KANG Dianmin4,
WANG Jiezhen1, XUE Fuzhong1
. A 2D minimal spanning tree model of the spatial structures of natural focal disease[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(01): 106 -110 .
[7] LI Yu-liang,WANG Yong-zheng,WANG Xiao-hua,ZHANG Fu-jun,ZHU Li-dong,ZHANG Wang-ming,LI Zheng,LI Zhen-jia,ZHANG Kai-xian. I implantation combined with Gemcitabine in the treatment of advanced pancreatic cancer[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(4): 393 -396 .
[8] LIU Hai-Chun, ZHANG Jian-Feng, CHEN Yuan-zhen. Bone collagen and biomechanical propertyies in the femur of osteoporosis rats[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(5): 42 -45 .
[9] FENG Fuli1, WEI Shuzhen2, ZHANG Yonghuan3, LI Li1, CHEN Rong1, LIRuifeng1. Relationship between high mortality and altered expression of Klotho in insulin resistance rats[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(6): 5 -8 .
[10] LI Wei,LI Dao-wei,YE Qian,GAO Shun-cui,JIANG Shu-juan.

Diagnostic value of transbronchial needle aspiration in paratracheal mediastinal lesions

[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2008, 46(11): 1063 -1065 .