Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 74-80.doi: 10.6040/j.issn.1671-7554.0.2020.0601
• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles Next Articles
Jian WANG1,2,3,*(),Wenjing ZHOU1,2,Zhiyi XUE1,2,Xiaofei LIU1,2
CLC Number:
1 |
Gusyatiner O , Hegi ME . Glioma epigenetics: from subclassification to novel treatment options[J]. Semin Cancer Biol, 2018, 51: 50- 58.
doi: 10.1016/j.semcancer.2017.11.010 |
2 |
Wirsching HG , Galanis E , Weller M . Glioblastoma[J]. Handb Clin Neurol, 2016, 134: 381- 397.
doi: 10.1016/B978-0-12-802997-8.00023-2 |
3 |
Lapointe S , Perry A , Butowski NA . Primary brain tumours in adults[J]. Lancet, 2018, 392 (10145): 432- 446.
doi: 10.1016/S0140-6736(18)30990-5 |
4 |
Bush NA , Chang SM , Berger MS . Current and future strategies for treatment of glioma[J]. Neurosurg Rev, 2017, 40 (1): 1- 14.
doi: 10.1007/s10143-016-0709-8 |
5 |
Tandon N , Thakkar KN , LaGory EL , et al. Generation of stable expression mammalian cell lines using lentivirus[J]. Bio Protoc, 2018, 8 (21): e3073.
doi: 10.21769/BioProtoc.3073 |
6 |
Damian M , Porteus MH . A crisper look at genome editing: RNA-guided genome modification[J]. Mol Ther, 2013, 21 (4): 720- 722.
doi: 10.1038/mt.2013.46 |
7 |
Bhere D , Tamura K , Wakimoto H , et al. MicroRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis[J]. Neruro Oncol, 2018, 20 (2): 215- 224.
doi: 10.1093/neuonc/nox138 |
8 |
Tasdemir N , Bossart EA , Li Z , et al. Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures[J]. Cancer Res, 2018, 78 (21): 6209- 6222.
doi: 10.1158/0008-5472.CAN-18-1416 |
9 |
Wang J , Miletic H , Sakariassen PØ , et al. A reproducible brain tumor model established from human glioblastoma biopsies[J]. BMC Cancer, 2009, 9: 465.
doi: 10.1186/1471-2407-9-465 |
10 |
Bespalov VG , Alexandrov VA , Vysochina GI , et al. The inhibiting activity of meadowsweet extract on neurocarcinogenesis induced transplacentally in rats by ethylnitrosourea[J]. J Neurooncol, 2017, 131 (3): 459- 467.
doi: 10.1007/s11060-016-2323-6 |
11 |
de Gooijer MC , Guillén Navarro M , Bernards R , et al. An experimenter's guide to glioblastoma invasion pathways[J]. Trends Mol Med, 2018, 24 (9): 763- 780.
doi: 10.1016/j.molmed.2018.07.003 |
12 |
Heinrich MA , Bansal R , Lammers T , et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics[J]. Adv Mater, 2019, 31 (14): e1806590.
doi: 10.1002/adma.201806590 |
13 |
Singer O , Tiscornia G , Ikawa M , et al. Rapid generation of knockdown transgenic mice by silencing lentiviral vectors[J]. Nat Protoc, 2006, 1 (1): 286- 292.
doi: 10.1038/nprot.2006.44 |
14 |
Lusis AJ , Yu J , Wang SS . The problem of passenger genes in transgenic mice[J]. Arterioscler Thromb Vasc Biol, 2007, 27 (10): 2100- 2103.
doi: 10.1161/ATVBAHA.107.147918 |
15 |
Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002 |
16 | Ding H , Roncari L , Shannon P , et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas[J]. Cancer Res, 2001, 61 (9): 3826- 3836. |
17 |
Reilly KM , Loisel DA , Bronson RT , et al. Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects[J]. Nat Genet, 2000, 26 (1): 109- 113.
doi: 10.1038/79075 |
18 |
Uhrbom L , Hesselager G , Ostman A , et al. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells[J]. Int J Cancer, 2000, 85 (3): 398- 406.
doi: 10.1002/(SICI)1097-0215(20000201)85:3<398::AID-IJC17>3.0.CO;2-L |
19 |
Bruggeman SW , Hulsman D , Tanger E , et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma[J]. Cancer Cell, 2007, 12 (4): 328- 341.
doi: 10.1016/j.ccr.2007.08.032 |
20 |
Uhrbom L , Kastemar M , Johansson FK , et al. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis[J]. Cancer Res, 2005, 65 (6): 2065- 2069.
doi: 10.1158/0008-5472.CAN-04-3588 |
21 |
Verhaak RG , Hoadley KA , Purdom E , et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[J]. Cancer Cell, 2010, 17 (1): 98- 110.
doi: 10.1016/j.ccr.2009.12.020 |
22 |
Chakravarty D , Pedraza AM , Cotari J , et al. EGFR and PDGFRA co-expression and heterodimerization in glioblastoma tumor sphere lines[J]. Sci Rep, 2017, 7 (1): 9043.
doi: 10.1038/s41598-017-08940-9 |
23 | Salsman J , Dellaire G . Precision genome editing in the CRISPR Era[J]. Biochem Cell Biol, 2017, 95 (2): 187- 201. |
24 |
Schold SC Jr , Friedman HS . Human brain tumor xenografts[J]. Prog Exp Tumor Res, 1984, 28: 18- 31.
doi: 10.1159/000408235 |
25 |
Festing MF , May D , Connors TA , et al. An athymic nude mutation in the rat[J]. Nature, 1978, 274 (5669): 365- 366.
doi: 10.1038/274365a0 |
26 | Helson L , Das SK , Hajdu SI . Human neuroblastoma in nude mice[J]. Cancer Res, 1975, 35 (9): 2594- 2599. |
27 | Povlsen CO , Visfeldt J , Rygaard J , et al. Growth patterns and chromosome constitutions of human malignant tumors after long-term serial transplantation in nude mice[J]. Acta Pathol Microbiol Scand A, 1975, 83 (6): 709- 716. |
28 |
Mahesparan R , Read TA , Lund-Johansen M , et al. Expression of extracellular matrix components in a highly infiltrative in vivo glioma model[J]. Acta Neuropathol, 2003, 105 (1): 49- 57.
doi: 10.1007/s00401-002-0610-0 |
29 |
Engebraaten O , Hjortland GO , Hirschberg H , et al. Growth of precultured human glioma specimens in nude rat brain[J]. J Neurosurg, 1999, 90 (1): 125- 132.
doi: 10.3171/jns.1999.90.1.0125 |
30 |
Beck B , Blanpain C . Unravelling cancer stem cell potential[J]. Nat Rev Cancer, 2013, 13 (10): 727- 738.
doi: 10.1038/nrc3597 |
31 |
Rubio-Manzanares Dorado M , Marín Gómez LM , Aparicio Sánchez D , et al. Translational pancreatic cancer research: a comparative study on patient- derived xenograft models[J]. World J Gastroenterol, 2018, 24 (7): 794- 809.
doi: 10.3748/wjg.v24.i7.794 |
32 |
Jung J . Human tumor xenograft models for preclinical assessment of anticancer drug development[J]. Toxicol Res, 2014, 30 (1): 1- 5.
doi: 10.5487/TR.2014.30.1.001 |
33 |
Siolas D , Hannon GJ . Patient derived tumor xenografts: transforming clinical samples into mouse models[J]. Cancer Res, 2013, 73 (17): 5315- 5319.
doi: 10.1158/0008-5472.CAN-13-1069 |
34 |
Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002 |
35 | Bjerkvig R , Laerum OD , Mella O . Glioma cell interactions with fetal rat brain aggregates in vitro and with brain tissue in vivo[J]. Cancer Res, 1986, 46 (8): 4071- 4079. |
36 |
Ying QL , Stavridis M , Griffiths D , et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture[J]. Nat Biotechnol, 2003, 21 (2): 183- 186.
doi: 10.1038/nbt780 |
37 |
Benito-Kwiecinski S , Lancaster MA . Brain Organoids: Human neurodevelopment in a dish[J]. Cold Spring Harb Perspect Biol, 2019, a035709.
doi: 10.1101/cshperspect.a035709 |
38 |
Quadrato G , Nguyen T , Macosko EZ , et al. Cell diversity and network dynamics in photosensitive human brain organoids[J]. Nature, 2017, 545 (7652): 48- 53.
doi: 10.1038/nature22047 |
39 |
Kikuchi T , Morizane A , Doi D , et al. Human iPS cell-derived dopaminergic neurons function in a primate parkinson's disease model[J]. Nature, 2017, 548 (7669): 592- 596.
doi: 10.1038/nature23664 |
40 |
Bian S , Repic M , Guo Z , et al. Genetically engineered cerebral organoids model brain tumor formation[J]. Nat Methods, 2018, 15 (8): 631- 639.
doi: 10.1038/s41592-018-0070-7 |
41 |
Di Lullo E , Kriegstein AR . The use of brain organoids to investigate neural development and disease[J]. Nat Rev Neurosci, 2017, 18 (10): 573- 584.
doi: 10.1038/nrn.2017.107 |
42 |
Camp JG , Badsha F , Florio M , et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development[J]. Proc Natl Acad Sci USA, 2015, 112 (51): 15672- 15677.
doi: 10.1073/pnas.1520760112 |
43 |
Pasca SP . The rise of three-dimensional human brain cultures[J]. Nature, 2018, 553 (7689): 437- 445.
doi: 10.1038/nature25032 |
44 |
Qian Xuyu , Nguyen Ha Nam , Song Mingxi M , et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165 (5): 1238- 1254.
doi: 10.1016/j.cell.2016.04.032 |
45 | Gately L , McLachlan SA , Dowling A , et al. Life beyond a diagnosis of glioblastoma: a system review of the literature[J]. J Cancer Surviv, 2017, 11 (4): 447- 452. |
46 |
Lamb J , Crawford ED , Peck D , et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313 (5795): 1929- 1935.
doi: 10.1126/science.1132939 |
47 |
Michnick SW . The connectivity map[J]. Nat Chem Biol, 2006, 2 (12): 663- 664.
doi: 10.1038/nchembio1206-663 |
[1] | Gang LI,Hao XUE,Wei QIU,Rongrong ZHAO. Research advances in the formation of glioma immunosuppressive microenvironment [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 67-73. |
[2] | XU Jixi, CHEN Weijian. Diffuse midline glioma with H3 K27M mutation in the spinal cord: a case report [J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 96-101. |
|