Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 74-80.doi: 10.6040/j.issn.1671-7554.0.2020.0601

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

Overview of glioblastoma models and development and application of brain organoids

Jian WANG1,2,3,*(),Wenjing ZHOU1,2,Zhiyi XUE1,2,Xiaofei LIU1,2   

  1. 1. Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
    2. Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, Shandong, China
    3. Department of Biomedicine, University of Bergen, Bergen 5009, Vestland, Norway
  • Received:2020-04-15 Online:2020-08-01 Published:2020-08-07
  • Contact: Jian WANG E-mail:jian.wang@sdu.edu.cn

Abstract:

Glioblastoma (GBM) is the most common primary brain tumor with high morbidity and high mortality. The primary goal of researches on GBM is to establish models to recapitulate the tumor invasive phenotype. In this review, we have systematically summarized the in vitro and in vivo models in GBM study by discussing the establishment and applications as well as their limitations. We acknowledge the development of various model systems in recent years which has substantially improved GBM research activities. However, largely due to difficulties of recapitulating the complicated microenvironment in GBM, it remains challenging to explore the tumor developmental mechanism and candidate drug efficacy in the treatment. Our team has extensively studied GBM for many years and established an ex-vivo model using rat brain organoids. Extensive data show that the model can highly mimic the process of brain development. Together with GBM patient-derived tumor spheroids and brain organoids, we have established co-culture model systems in order to in real time study the invasive GBM, which may fundamentally help us to understand the tumor development. Moreover, using the system, we are able to sort the invasive tumor cells from non-invasive tumor cells and analyze single cell RNA sequences to identify key molecules, which will be possible in turn to offer us new therapeutic candidates potentially targeting GBM.

Key words: Glioblastoma, Ex-vivo model, Brain organoid, Tumor spheroid, Co-culture

CLC Number: 

  • R739.4

Fig.1

A schematic overview of the establishment of rat brain organoids and co-culture system by confronting rat brain organoids with 3D patient-derived GBM spheroids."

1 Gusyatiner O , Hegi ME . Glioma epigenetics: from subclassification to novel treatment options[J]. Semin Cancer Biol, 2018, 51: 50- 58.
doi: 10.1016/j.semcancer.2017.11.010
2 Wirsching HG , Galanis E , Weller M . Glioblastoma[J]. Handb Clin Neurol, 2016, 134: 381- 397.
doi: 10.1016/B978-0-12-802997-8.00023-2
3 Lapointe S , Perry A , Butowski NA . Primary brain tumours in adults[J]. Lancet, 2018, 392 (10145): 432- 446.
doi: 10.1016/S0140-6736(18)30990-5
4 Bush NA , Chang SM , Berger MS . Current and future strategies for treatment of glioma[J]. Neurosurg Rev, 2017, 40 (1): 1- 14.
doi: 10.1007/s10143-016-0709-8
5 Tandon N , Thakkar KN , LaGory EL , et al. Generation of stable expression mammalian cell lines using lentivirus[J]. Bio Protoc, 2018, 8 (21): e3073.
doi: 10.21769/BioProtoc.3073
6 Damian M , Porteus MH . A crisper look at genome editing: RNA-guided genome modification[J]. Mol Ther, 2013, 21 (4): 720- 722.
doi: 10.1038/mt.2013.46
7 Bhere D , Tamura K , Wakimoto H , et al. MicroRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis[J]. Neruro Oncol, 2018, 20 (2): 215- 224.
doi: 10.1093/neuonc/nox138
8 Tasdemir N , Bossart EA , Li Z , et al. Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures[J]. Cancer Res, 2018, 78 (21): 6209- 6222.
doi: 10.1158/0008-5472.CAN-18-1416
9 Wang J , Miletic H , Sakariassen PØ , et al. A reproducible brain tumor model established from human glioblastoma biopsies[J]. BMC Cancer, 2009, 9: 465.
doi: 10.1186/1471-2407-9-465
10 Bespalov VG , Alexandrov VA , Vysochina GI , et al. The inhibiting activity of meadowsweet extract on neurocarcinogenesis induced transplacentally in rats by ethylnitrosourea[J]. J Neurooncol, 2017, 131 (3): 459- 467.
doi: 10.1007/s11060-016-2323-6
11 de Gooijer MC , Guillén Navarro M , Bernards R , et al. An experimenter's guide to glioblastoma invasion pathways[J]. Trends Mol Med, 2018, 24 (9): 763- 780.
doi: 10.1016/j.molmed.2018.07.003
12 Heinrich MA , Bansal R , Lammers T , et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics[J]. Adv Mater, 2019, 31 (14): e1806590.
doi: 10.1002/adma.201806590
13 Singer O , Tiscornia G , Ikawa M , et al. Rapid generation of knockdown transgenic mice by silencing lentiviral vectors[J]. Nat Protoc, 2006, 1 (1): 286- 292.
doi: 10.1038/nprot.2006.44
14 Lusis AJ , Yu J , Wang SS . The problem of passenger genes in transgenic mice[J]. Arterioscler Thromb Vasc Biol, 2007, 27 (10): 2100- 2103.
doi: 10.1161/ATVBAHA.107.147918
15 Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002
16 Ding H , Roncari L , Shannon P , et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas[J]. Cancer Res, 2001, 61 (9): 3826- 3836.
17 Reilly KM , Loisel DA , Bronson RT , et al. Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects[J]. Nat Genet, 2000, 26 (1): 109- 113.
doi: 10.1038/79075
18 Uhrbom L , Hesselager G , Ostman A , et al. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells[J]. Int J Cancer, 2000, 85 (3): 398- 406.
doi: 10.1002/(SICI)1097-0215(20000201)85:3<398::AID-IJC17>3.0.CO;2-L
19 Bruggeman SW , Hulsman D , Tanger E , et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma[J]. Cancer Cell, 2007, 12 (4): 328- 341.
doi: 10.1016/j.ccr.2007.08.032
20 Uhrbom L , Kastemar M , Johansson FK , et al. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis[J]. Cancer Res, 2005, 65 (6): 2065- 2069.
doi: 10.1158/0008-5472.CAN-04-3588
21 Verhaak RG , Hoadley KA , Purdom E , et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[J]. Cancer Cell, 2010, 17 (1): 98- 110.
doi: 10.1016/j.ccr.2009.12.020
22 Chakravarty D , Pedraza AM , Cotari J , et al. EGFR and PDGFRA co-expression and heterodimerization in glioblastoma tumor sphere lines[J]. Sci Rep, 2017, 7 (1): 9043.
doi: 10.1038/s41598-017-08940-9
23 Salsman J , Dellaire G . Precision genome editing in the CRISPR Era[J]. Biochem Cell Biol, 2017, 95 (2): 187- 201.
24 Schold SC Jr , Friedman HS . Human brain tumor xenografts[J]. Prog Exp Tumor Res, 1984, 28: 18- 31.
doi: 10.1159/000408235
25 Festing MF , May D , Connors TA , et al. An athymic nude mutation in the rat[J]. Nature, 1978, 274 (5669): 365- 366.
doi: 10.1038/274365a0
26 Helson L , Das SK , Hajdu SI . Human neuroblastoma in nude mice[J]. Cancer Res, 1975, 35 (9): 2594- 2599.
27 Povlsen CO , Visfeldt J , Rygaard J , et al. Growth patterns and chromosome constitutions of human malignant tumors after long-term serial transplantation in nude mice[J]. Acta Pathol Microbiol Scand A, 1975, 83 (6): 709- 716.
28 Mahesparan R , Read TA , Lund-Johansen M , et al. Expression of extracellular matrix components in a highly infiltrative in vivo glioma model[J]. Acta Neuropathol, 2003, 105 (1): 49- 57.
doi: 10.1007/s00401-002-0610-0
29 Engebraaten O , Hjortland GO , Hirschberg H , et al. Growth of precultured human glioma specimens in nude rat brain[J]. J Neurosurg, 1999, 90 (1): 125- 132.
doi: 10.3171/jns.1999.90.1.0125
30 Beck B , Blanpain C . Unravelling cancer stem cell potential[J]. Nat Rev Cancer, 2013, 13 (10): 727- 738.
doi: 10.1038/nrc3597
31 Rubio-Manzanares Dorado M , Marín Gómez LM , Aparicio Sánchez D , et al. Translational pancreatic cancer research: a comparative study on patient- derived xenograft models[J]. World J Gastroenterol, 2018, 24 (7): 794- 809.
doi: 10.3748/wjg.v24.i7.794
32 Jung J . Human tumor xenograft models for preclinical assessment of anticancer drug development[J]. Toxicol Res, 2014, 30 (1): 1- 5.
doi: 10.5487/TR.2014.30.1.001
33 Siolas D , Hannon GJ . Patient derived tumor xenografts: transforming clinical samples into mouse models[J]. Cancer Res, 2013, 73 (17): 5315- 5319.
doi: 10.1158/0008-5472.CAN-13-1069
34 Ohgaki H , Kleihues P . The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19 (4): 764- 772.
doi: 10.1158/1078-0432.CCR-12-3002
35 Bjerkvig R , Laerum OD , Mella O . Glioma cell interactions with fetal rat brain aggregates in vitro and with brain tissue in vivo[J]. Cancer Res, 1986, 46 (8): 4071- 4079.
36 Ying QL , Stavridis M , Griffiths D , et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture[J]. Nat Biotechnol, 2003, 21 (2): 183- 186.
doi: 10.1038/nbt780
37 Benito-Kwiecinski S , Lancaster MA . Brain Organoids: Human neurodevelopment in a dish[J]. Cold Spring Harb Perspect Biol, 2019, a035709.
doi: 10.1101/cshperspect.a035709
38 Quadrato G , Nguyen T , Macosko EZ , et al. Cell diversity and network dynamics in photosensitive human brain organoids[J]. Nature, 2017, 545 (7652): 48- 53.
doi: 10.1038/nature22047
39 Kikuchi T , Morizane A , Doi D , et al. Human iPS cell-derived dopaminergic neurons function in a primate parkinson's disease model[J]. Nature, 2017, 548 (7669): 592- 596.
doi: 10.1038/nature23664
40 Bian S , Repic M , Guo Z , et al. Genetically engineered cerebral organoids model brain tumor formation[J]. Nat Methods, 2018, 15 (8): 631- 639.
doi: 10.1038/s41592-018-0070-7
41 Di Lullo E , Kriegstein AR . The use of brain organoids to investigate neural development and disease[J]. Nat Rev Neurosci, 2017, 18 (10): 573- 584.
doi: 10.1038/nrn.2017.107
42 Camp JG , Badsha F , Florio M , et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development[J]. Proc Natl Acad Sci USA, 2015, 112 (51): 15672- 15677.
doi: 10.1073/pnas.1520760112
43 Pasca SP . The rise of three-dimensional human brain cultures[J]. Nature, 2018, 553 (7689): 437- 445.
doi: 10.1038/nature25032
44 Qian Xuyu , Nguyen Ha Nam , Song Mingxi M , et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165 (5): 1238- 1254.
doi: 10.1016/j.cell.2016.04.032
45 Gately L , McLachlan SA , Dowling A , et al. Life beyond a diagnosis of glioblastoma: a system review of the literature[J]. J Cancer Surviv, 2017, 11 (4): 447- 452.
46 Lamb J , Crawford ED , Peck D , et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313 (5795): 1929- 1935.
doi: 10.1126/science.1132939
47 Michnick SW . The connectivity map[J]. Nat Chem Biol, 2006, 2 (12): 663- 664.
doi: 10.1038/nchembio1206-663
[1] Gang LI,Hao XUE,Wei QIU,Rongrong ZHAO. Research advances in the formation of glioma immunosuppressive microenvironment [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 67-73.
[2] XU Jixi, CHEN Weijian. Diffuse midline glioma with H3 K27M mutation in the spinal cord: a case report [J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .