Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (4): 116-121.doi: 10.6040/j.issn.1671-7554.0.2024.1416
• Review • Previous Articles
YANG Weifang1, XU Hong1, LIU Yuantao2, ZHAO Huichen1
CLC Number:
| [1] Kaplowitz PB, Vaidyanathan P. Update on pediatric hyperthyroidism[J]. Curr Opin Endocrinol Diabetes Obes, 2020, 27(1): 70-76. [2] Tsukada D, Iizuka K, Takao K, et al. Graves disease with thymic hyperplasia: the response of the thyroid function, thyrotropin receptor autoantibody, and thymic size to thiamazole treatment[J]. Intern Med, 2022, 61(18): 2753-2757. [3] Darouassi Y, Hanine MA, Aljalil A, et al. Surgical management of hyperthyroidism: about 60 cases[J]. Pan Afr Med J,2018, 31:43. doi: 10.11604/pamj.2018.31.43.16695 [4] Lee JK, Kong Y, Choi JB, et al. TSH receptor antibody as a predictor of difficult robotic thyroidectomy in patients with Graves disease[J]. J Rob Surg, 2024, 18(1): 108. [5] Kumata K, Nagata K, Matsushita M, et al. Thyrotropin receptor antibody(TRAb)-IgM levels are markedly higher than TRAb-IgG levels in Graves disease patients and controls, and TRAb-IgM production is related to epstein-barr virus reactivation[J]. Viral Immunol, 2016, 29(8): 459-463. [6] Suzuki N, Inoue K, Yoshimura R, et al. The mediation role of thyrotropin receptor antibody in the relationship between age and severity of hyperthyroidism in Graves disease[J]. Thyroid, 2022, 32(10): 1243-1248. [7] Edo N, Kawakami K, Fujita Y, et al. Exosomes expressing thyrotropin receptor attenuate autoantibody-mediated stimulation of cyclic adenosine monophosphate production[J]. Thyroid, 2019, 29(7): 1012-1017. [8] Paik JS, Kim SE, Kim JH, et al. Insulin-like growth factor-1 enhances the expression of functional TSH receptor in orbital fibroblasts from thyroid-associated ophthalmopathy[J]. Immunobiology, 2020, 225(2): 151902. doi:10.1016/j.imbio.2019.151902 [9] Jin M, Kim CA, Jeon MJ, et al. Dynamic risk model for the medical treatment of Graves hyperthyroidism according to treatment duration[J]. Endocrinol Metab(Seoul), 2024, 39(4): 579-589. [10] Dwivedi SN, Kalaria T, Buch H. Thyroid autoantibodies[J]. J Clin Pathol, 2023, 76(1): 19-28. [11] Struja T, Jutzi R, Imahorn N, et al. Comparison of five TSH-receptor antibody assays in Graves disease: results from an observational pilot study[J]. BMC Endocr Disord, 2019, 19(1): 38. doi:10.1186/s12902-019-0363-6 [12] Moledina M, Roos J, Murthy R. Thyrotropin receptor autoantibody assessment in thyroid eye disease: does the assay type matter?[J]. Korean J Ophthalmol, 2023, 37(2): 147-156. [13] Grubczak K, Starosz A, Stozek K, et al. Regulatory B cells involvement in autoimmune phenomena occurring in pediatric Graves disease patients[J]. Int J Mol Sci, 2021, 22(20): 10926. [14] Wolstenhulme F, Bibby I, Cole M, et al. Graves-PCD: protocol for a randomised, dose-finding, adaptive trial of the plasma cell-depleting agent daratumumab in severe Graves disease[J]. BMJ Open, 2024, 14(6): e079158. [15] Kahaly GJ, Bartalena L, Hegedüs L, et al. 2018 European thyroid association guideline for the management of Graves hyperthyroidism[J]. Eur Thyroid J, 2018, 7(4): 167-186. [16] Ross DS, Burch HB, Cooper DS, et al. 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis[J]. Thyroid, 2016, 26(10): 1343-1421. [17] 中华医学会内分泌学分会,中国医师协会内分泌代谢科医师分会,中华医学会核医学分会,等. 中国甲状腺功能亢进症和其他原因所致甲状腺毒症诊治指南[J].中华内分泌代谢杂志, 2022, 38(8): 700-748. [18] Park S, Song EY, Oh HS, et al. When should antithyroid drug therapy to reduce the relapse rate of hyperthyroidism in Graves disease be discontinued?[J]. Endocrine, 2019, 65(2): 348-356. [19] Park SY, Kim BH, Kim M, et al. The longer the antithyroid drug is used, the lower the relapse rate in Graves disease: a retrospective multicenter cohort study in Korea[J]. Endocrine, 2021, 74(1): 120-127. [20] Liu X, Qiang W, Liu X, et al. A second course of antithyroid drug therapy for recurrent Graves disease: an experience in endocrine practice[J]. Eur J Endocrinol, 2015, 172(3): 321-326. [21] Azizi F, Amouzegar A, Tohidi M, et al. Increased remission rates after long-term methimazole therapy in patients with Graves disease: results of a randomized clinical trial[J]. Thyroid, 2019, 29(9): 1192-1200. [22] Bandai S, Okamura K, Fujikawa M, et al. The long-term follow-up of patients with thionamide-treated Graves hyperthyroidism[J]. Endocr J, 2019, 66(6): 535-545. [23] Laurberg P, Berman DC, Andersen S, et al. Sustained control of Graves hyperthyroidism during long-term low-dose antithyroid drug therapy of patients with severe Graves orbitopathy[J]. Thyroid, 2011, 21(9): 951-956. [24] Song Q, Fang Z, Wang S, et al. Correlation between TRAb and early onset hypothyroidism after 131I treatment for Graves disease[J]. Horm Metab Res, 2024, 56(11): 779-784. [25] Listewnik MH, Piwowarska-Bilska H, Jasiakiewicz K, et al. Influence of high tissue-absorbed dose on anti-thyroid antibodies in radioiodine therapy of Graves disease patients[J]. Adv Clin Exp Med, 2021, 30(9): 913-921. [26] Lu L, Gao C, Zhang N. Age moderates the associations between TRAbs, free T3 and outcomes of Graves disease patients with radioactive iodine treatment[J]. Clin Endocrinol(Oxf), 2021, 94(2): 303-309. [27] Masahito, Katahira, Hidetada, et al. Critical amino acid variants in HLA-DRB1 allotypes in the development of Graves disease and Hashimotos thyroiditis in the Japanese population[J]. Hum Immunol, 2021, 82(4):226-231. [28] Zheng H, Xu J, Chu Y, et al. A global regulatory network for dysregulated gene expression and abnormal metabolic signaling in immune cells in the microenvironment of Graves disease and hashimotos thyroiditis[J]. Front Immunol, 2022, 13: 879824. doi: 10.3389/fimmu.2022.879824 [29] Tajiri J. Radioactive iodine therapy for goitrous Hashimotos thyroiditis[J]. J Clin Endocrinol Metab, 2006, 91(11): 4497-4500. [30] Vassallo A, Ferrari F, di Filippo L, et al. Transition from hashimoto thyroiditis to Graves disease: an unpredictable change? [J]. Endocrine, 2024, 84(2): 541-548. [31] Rotondi M, Bendotti G, Croce L, et al. A unique presentation of Graves disease in a pregnant woman with severe hypothyroidism[J]. Gynecol Endocrinol, 2022, 38(8): 697-701. [32] 《孕产期甲状腺疾病防治管理指南》编撰委员会, 中华医学会内分泌学分会, 中华预防医学会妇女保健分会. 孕产期甲状腺疾病防治管理指南[J]. 中国妇幼卫生杂志, 2022, 13(4): 1-15. [33] Stagnaro-Green A. Approach to the patient with postpartum thyroiditis[J]. J Clin Endocrinol Metab, 2012, 97(2): 334-342. [34] Pizzocaro A, Colombo P, Vena W, et al. Outcome of SARS-COV-2-related thyrotoxicosis in survivors of COVID-19: a prospective study[J]. Endocrine, 2021, 73(2):255-260. [35] Zettinig G. Thyroid and SARS-CoV-2[J]. J Klin Endokrinol Stoffwechs, 2022, 15(3): 100-104. [36] Sousa B, Pestana Santos C, Ferreira AG,et al. Graves disease caused by SARS-CoV-2 infection[J]. Eur J Case Rep Intern Med, 2022, 9(7): 003470. [37] Rotondi M, Coperchini F, Ricci G, et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis[J]. J Endocrinol Invest, 2021, 44(5):1085-1090. [38] Chaker L, Cooper DS, Walsh JP, et al. Hyperthyroidism[J]. Lancet, 2024, 403(10428): 768-780. [39] Xia N, Ye X, Hu X, et al. Simultaneous induction of Graves hyperthyroidism and Graves ophthalmopathy by TSHR genetic immunization in BALB/c mice[J]. PLoS One, 2017, 12(3): e0174260. [40] Lane LC, Cheetham TD, Perros P, et al. New therapeutic horizons for Graves hyperthyroidism[J]. Endocr Rev, 2020, 41(6): 873-884. |
| [1] | GUO Shuhua, FAN Yang, TIAN Feng, WANG Chuanxin, DU Lutao, LI Peilong, GUO Xing, XU Shuo. Role of microfibril-associated protein 3 in regulating mesenchymal transition of glioma stem cells [J]. Journal of Shandong University (Health Sciences), 2024, 62(6): 9-16. |
| [2] | WEI Yanruoxue, LI Ziqi, LIU Chuncheng, LIU Xiaohan, ZHAO Ran, LIU Yukun. Intratumor heterogeneity of SP1 expression in colorectal cancer and its clinical significance [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 89-94. |
| [3] | LIU Chuncheng, LIU Xiaohan, WEI Yanruoxue, LI Ziqi, LIU Yukun, ZHAO Ran. Subcellular localization pattern of bromodomain containing 9 in colorectal cancer and its clinical significance [J]. Journal of Shandong University (Health Sciences), 2024, 62(4): 24-30. |
| [4] | YANG Xueyan, WU Yinping, LYU Li, ZHAO Zehua, MA Hangyu, LI Fengcai, WANG Kai, FAN Yuchen. Diagnostic value of dynamic changes of monocyte-to-lymphocyte ratio in acute-on-chronic hepatitis B liver failure [J]. Journal of Shandong University (Health Sciences), 2024, 62(3): 61-69. |
| [5] | DIAO Yujie, LIN Lin, LI Wenxuan, WANG Zhouyang, JIANG Bei, HU Yingying, LIU Guangyi. Neutrophil-to-platelet ratio predicts adverse renal outcomes in anti-neutrophil cytoplasmic antibody-associated vasculitis and its synergistic multifactor optimization model [J]. Journal of Shandong University (Health Sciences), 2024, 62(2): 60-68. |
| [6] | LI Qing, ZHANG Anna, DU Yansheng, DIAO Jiuzhou, CUI Ruojin, FU Pengrui, YUE Xinyi, ZHOU Qingbo. Influencing factors of the transformation of single demyelinating lesion of spinal cord in 47 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 37-43. |
| [7] | LIU Yan, LENG Shanshan, XIA Xiaona, DONG Hao, HUANG Chencui, MENG Xiangshui. Functional outcomes of 376 patients with supratentorial spontaneous intracerebral hemorrhage based on radiomic parameters [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 59-67. |
| [8] | CHEN Rong, YANG Yue, YANG Zhixiang, SU Yaying, PANG Zhiying, WANG Dawei, CUI Shujun, YANG Fei. Texture analysis based on CT to predict the short-term outcomes of acute pulmonary embolism [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 78-85. |
| [9] | HUA Yuefan, HE Keyao, ZHANG Jiahao, QIAN Mengfan, LIU Yiwen, KONG Jinyu, YANG Haijun, ZHOU Fuyou. Effects of high expressions of hypoxia inducible factor-1 and vascular endothelial growth factor induced by Fusobacterium nucleatum on survival and prognosis of patients with esophageal squamous cell carcinoma [J]. Journal of Shandong University (Health Sciences), 2023, 61(11): 59-67. |
| [10] | ZHAO Qidi, WANG Kai, ZHAO Xiaogang, YAN Tao, WANG Yadong, DU Jiajun. Constructing and validating a prognostic model for patients with stage IIIB non-small cell lung cancer based on SEER database [J]. Journal of Shandong University (Health Sciences), 2023, 61(10): 23-37. |
| [11] | ZHENG Su, CHEN Shuhua, LI Hua, DENG Jie, CHEN Chunhong, WANG Xiaohui, FENG Weixing, HAN Xiaodi, ZHANG Yujia, LI Na, LI Mo, FANG Fang. Correlation between EEG variations and BASED evaluation of the efficacy of ACTH treatment in 54 cases of infantile spasms [J]. Journal of Shandong University (Health Sciences), 2022, 60(9): 91-96. |
| [12] | WANG Lihui, GAO Min, KONG Beihua. Angiosarcoma of the uterus: a report of 2 cases and literature review [J]. Journal of Shandong University (Health Sciences), 2022, 60(9): 108-112. |
| [13] | HE Shiqing, LI Wanwan, DONG Shuqing, MOU Jingyi, LIU Yuying, WEI Siyu, LIU Zhao, ZHANG Jiaxin. Construction of a prognostic risk model of pyroptosis-related genes in breast cancer based on database [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 34-43. |
| [14] | ZHANG Yufeng, XU Min, XING Xiuli, PANG Shuguang, HU Keqing. Epidemiological characteristics of 689 patients with non-ST-segment elevation myocardial infarction [J]. Journal of Shandong University (Health Sciences), 2022, 60(7): 118-122. |
| [15] | LI Linlin, WANG Kai. Prediction of hepatocellular carcinoma prognostic genes based on bioinformatics [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 50-58. |
|
||