Journal of Shandong University (Health Sciences) ›› 2026, Vol. 64 ›› Issue (1): 74-87.doi: 10.6040/j.issn.1671-7554.0.2024.1056
• Preclinical Medicine • Previous Articles Next Articles
ZHANG Qiuping1,2, ZHU Huizhi3, LYU Chuan1, XIA Yongqi1, ZHANG Xiu1
CLC Number:
| [1] Huang K, Yang T, Xu J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196): 407-418. [2] Liu L, Zhou L, Wang LL, et al. Programmed cell death in asthma: apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis[J]. J Inflamm Res, 2023,16: 2727-2754. doi: 10.2147/JIR.S417801 [3] Li BB, Chen YL, Pang F. MicroRNA-30a targets ATG5 and attenuates airway fibrosis in asthma by suppressing autophagy[J]. Inflammation, 2020, 43(1): 44-53. [4] Xu W, Deng H, Hu S, et al. Role of ferroptosis in lung diseases[J]. J Inflamm Res, 2021,14: 2079-2090. doi: 10.2147/JIR.S307081 [5] Li M, Li M, Hou Y, et al. Ferroptosis triggers airway inflammation in asthma[J]. Ther Adv Respir Dis, 2023, 17: 17534666231208628. doi: 10.1177/17534666231208628 [6] Lv X, Tang W, Qin J, et al. The crosslinks between fe-rroptosis and autophagy in asthma[J]. Front Immunol, 2023, 14: 1140791. doi: 10.3389/fimmu.2023.1140791 [7] Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019, 10(11): 822. doi: 10.1038/s41419-019-2064-5 [8] Hou W, Xie Y, Song X, et al. Autophagy promotes fe-rroptosis by degradation of ferritin[J]. Autophagy,2016,12(8): 1425-1428. [9] Ma S, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One, 2017,12(8): e0182921. doi: 10.1371/journal.pone.0182921 [10] Liu J, Kuang F, Kroemer G, et al. Autophagy-dependent ferroptosis: machinery and regulation[J]. Cell Chem Biol, 2020, 27(4): 420-435. [11] Sun Y, Peng I, Webster JD, et al. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response[J]. Sci Signal, 2015, 8(405): ra122. doi: 10.1126/scisignal.aab0949 [12] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update[J]. Nucleic Acids Res, 2013, 41(Database issue): D991-D995. [13] Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. doi: 10.1002/cpbi.5 [14] Liberzon A, Birger C, Thorvaldsdóttir H, et al. The Molecular Signatures Database(MSigDB)hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425. [15] Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations[J]. Nucleic Acids Res, 2023, 51(D1): D571-D582. [16] Szklarczyk D, Gable AL, Nastou KC, et al.The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. [17] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomole-cular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. [18] Dweep H, Gretz N, Sticht C. miRWalk database for mi-RNA-target interactions[J]. Methods Mol Biol, 2014, 1182: 289-305. doi: 10.1007/978-1-4939-1062-5_25 [19] Han H, Cho JW, Lee S, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions[J]. Nucleic Acids Res, 2018, 46(D1): D380-D386. [20] Chen B, Khodadoust MS, Liu CL, et al. Profiling tumor infiltrating immune cells with CIBERSORT[J]. Methods Mol Biol, 2018, 1711: 243-259. doi: 10.1007/978-1-4939-7493-1_12 [21] Zhou J, Tan Y, Hu L, et al. Inhibition of HSPA8 by ri-fampicin contributes to ferroptosis via enhancing auto-phagy[J]. Liver Int, 2022, 42(12): 2889-2899. [22] Fu W, Zhang M, Meng Y, et al. Increased NPM1 inhibit ferroptosis and aggravate renal fibrosis via Nrf2 pathway in chronic kidney disease[J]. Biochim Biophys Acta Mol Basis Dis, 2025, 1871(1): 167551. doi: 10.1016/j.bbadis.2024.167551 [23] Zheng R, Yu Y, Lv L, et al. m6A reader HNRNPA2B1 destabilization of ATG4B regulates autophagic activity, proliferation and olaparib sensitivity in breast cancer[J]. Exp Cell Res, 2023, 424(1): 113487. doi: 10.1016/j.yexcr.2023.113487 [24] Jiang J, Zhu J, Qiu P, et al. HNRNPA2B1-mediated m6A modification of FOXM1 promotes drug resistance and inhibits ferroptosis in endometrial cancer via regulation of LCN2[J]. Funct Integr Genomics, 2023, 24(1): 3. doi: 10.1007/s10142-023-01279-7 [25] 李政, 刘雅雯, 陈家希, 等. hnRNPA2B1通过抑制转铁蛋白受体增强胰腺癌细胞对铁死亡的抵抗[J]. 江苏大学学报(医学版), 2024, 34(1): 1-10. LI Zheng, LIU Yawen, CHEN Jiaxi, et al. hnRNPA2B1 enhances the resistance of pancreatic cancer cells to ferroptosis by inhibiting transferrin receptor[J]. Journal of Jiangsu University(Medicine Edition), 2024, 34(1): 1-10. [26] Duan Y, Yan Y, Fu H, et al. SNHG15-mediated feedback loop interplays with HNRNPA1/SLC7A11/GPX4 pathway to promote gastric cancer progression[J]. Cancer Sci, 2024, 115(7): 2269-2285. [27] Zhu S, Zhang Q, Sun X, et al. HSPA5 regulates ferroptotic cell death in cancer cells[J]. Cancer Res, 2017, 77(8): 2064-2077. [28] Mao C, Wang X, Liu Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53[J].Cancer Res, 2018, 78(13): 3484-3496. [29] Li S, Liao Z, Yin H, et al. G3BP1 coordinates lyso-phagy activity to protect against compression-induced cell ferroptosis during intervertebral disc degeneration[J]. Cell Prolif, 2023, 56(3): e13368. doi: 10.1111/cpr.13368 [30] Qin J, Li Z, Su L, et al. Expression of transferrin receptor/TFRC protein in bladder cancer cell T24 and its role in inducing iron death in bladder cancer[J]. Int J Biol Macromol, 2024, 274(Pt 1): 133323. doi: 10.1016/j.ijbiomac.2024.133323 [31] Meng J, Xu L, Ma B, et al. GABARAPL1 is essential for ACR-induced autophagic cell death of mouse Leydig cells[J]. Ecotoxicol Environ Saf, 2025, 289: 117426. doi: 10.1016/j.ecoenv.2024.117426 [32] Pan M, Zhang L, Chang S, et al. Poly-l-arginine promotes ferroptosis in asthmatic airway epithelial cells by modulating PBX1/GABARAPL1 axis[J]. Int J Biol Macromol, 2025, 286: 138478. doi: 10.1016/j.ijbiomac.2024.138478 [33] Gao K, Zhao Y, Si M, et al. ERS regulates endometrial epithelial cell autophagy through XBP1s-mediated activation of the PI3K/AKT pathway[J]. Sci Rep, 2025, 15(1): 5943. doi: 10.1038/s41598-024-84461-6 [34] Zuo Z, Luo M, Liu Z, et al. Selenium nanoparticles alleviate renal ischemia/reperfusion injury by inhibiting ferritinophagy via the XBP1/NCOA4 pathway[J]. Cell Commun Signal, 2024, 22(1): 376. doi: 10.1186/s12964-024-01751-2 [35] 黄秀芳, 廖钢, 高运吉, 等. 哮喘相关基因与治疗药物的生物信息学分析[J]. 中国实验方剂学杂志, 2020, 26(2): 155-163. HUANG Xiufang, LIAO Gang, GAO Yunji, et al. Bioinformatic analysis of related genes and therapeutic drugs of asthma[J].Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(2): 155-163. [36] 臧凝子, 李品, 庞立健, 等. 基于网络药理学和生物信息学筛选小青龙汤治疗支气管哮喘的关键基因和通路[J]. 中国实验方剂学杂志, 2021, 27(3): 171-183. ZANG Ningzi, LI Pin, PANG Lijian, et al. Exploring key genes and signaling pathways in treatment of bronchial asthma with Xiao Qinglongtang based on network pharmacology and bioinformatics[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(3): 171-183. [37] Potaczek DP, Miethe S, Schindler V, et al. Role of airway epithelial cells in the development of different asthma phenotypes[J]. Cell Signal, 2020, 69: 109523. doi: 10.1016/j.cellsig.2019.109523 [38] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485. [39] Murphy RC, Lai Y, Liu M, et al. Distinct epithelial-innate immune cell transcriptional circuits underlie airway hyperresponsiveness in asthma[J]. Am J Respir Crit Care Med, 2023, 207(12): 1565-1575. [40] Guida G, Riccio AM. Immune induction of airway remodeling[J]. Semin Immunol, 2019, 46: 101346. doi: 10.1016/j.smim.2019.101346 |
| [1] | ZHANG Zheng, WANG Jianwei, YANG Yujuan, ZHANG Yu, SONG Xicheng. Immunoglobulin E changes and risk factors in asthma children between 2008 and 2019 [J]. Journal of Shandong University (Health Sciences), 2025, 63(7): 32-36. |
| [2] | CAO Luofei, WANG Shanshan, WANG Jinrong, JIANG Heyun, MIAO Yu, MA Guangzeng. Analysis of the characteristics of bronchial dilation test in children with FeNO elevation during asthma exacerbation [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 38-44. |
| [3] | NIE Qiucheng, LI Yunfeng, TIAN Jing, LIU Xinjing, SUN Lili, WEI Yiju. NEDD4L regulates ferroptosis by mediating ubiquitination of ALDOA in glioblastoma cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(11): 8-17. |
| [4] | NIU Shuai, WU Xuejun. Research progress of ferroptosis in abdominal aortic aneurysm [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 74-79. |
| [5] | WANG Jing, LIU Xiaofei, ZENG Rong, XU Changjuan, ZHANG Jintao, DONG Liang. Identification of necroptosis-related biomarkers in asthma based on machine learning algorithms [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 21-32. |
| [6] | SUN Congcong, CUI Wenjing, ZHANG Jintao, ZHANG Dong, LIU Xiaofei, PAN Yun, QI Qian, XU Jiawei, ZENG Rong, GUO Hongxi, DONG Liang. Roles of ferroptosis in asthmatic airway remodeling [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 1-9. |
| [7] | YAN Jinyan, YANG Chun, LI Lei, WU Fuling, JIAO Yongli, ZHANG Xiaowei, LI Jing, ZHANG Ruizhen, WANG Lei, MA Xiang. Correlation between asthma and pertussis infection in children of Shandong Province, China [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 33-41. |
| [8] | LIU Haixia, HUANGFU Shasha, SANG Xiaoyu, CUI Dongqing, BI Jianzhong, WANG Ping. Effects of mesenchymal stem cells on ferroptosis in experimental autoimmune encephalomyelitis mice [J]. Journal of Shandong University (Health Sciences), 2024, 62(6): 1-8. |
| [9] | SHI Shuochuan, ZENG Rong, ZHANG Jintao, ZHANG Dong, PAN Yun, LIU Xiaofei, XU Changjuan, WANG Ying, DONG Liang. Bioinformatics-based exploration of potential differential immune genes and immune infiltration signatures in bronchial asthma [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 43-53. |
| [10] | XU Fang, TIAN Guoxiong, SUN Beibei, CHEN Xinyi, CHEN Gaoying, ZHANG Ruiqi, YING Songmin, WU Miaolian, ZHANG Chao, WU Youqian. Research progress on biological and cellular therapies for severe asthma [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 35-42. |
| [11] | ZHANG Jintao, DONG Liang. Airway epithelium and epithelial-derived cytokines in asthma: reflection and outlook [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 1-6. |
| [12] | WANG Ting, ZHANG Li, WANG Gang. Neuropsychological asthma [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 28-34. |
| [13] | DING Yiren, LIU Wanying, YAO Lei, YAO Xin. Research progress of the treatment of asthma with macrolide antibiotics [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 21-27. |
| [14] | LIU Aijing, LI Yanru, GAO Huiru, DUAN Weili, LI Peilong, LI Juan, DU Lutao, WANG Chuanxin. Expression of autophagy-related protein 5 in colon cancer and its impact on the migration and invasion ability of colon cancer cells [J]. Journal of Shandong University (Health Sciences), 2024, 62(4): 14-23. |
| [15] | SHEN Haitao, QIAO Yaqin, DONG Ping, LU Yan. Effects of programmed necrosis and ferroptosis regulated by toll-like receptor 4 on acetaminophen-induced liver injury [J]. Journal of Shandong University (Health Sciences), 2024, 62(4): 1-8. |
|
||