Journal of Shandong University (Health Sciences) ›› 2026, Vol. 64 ›› Issue (2): 66-77.doi: 10.6040/j.issn.1671-7554.0.2024.0803
• Clinical Medicine • Previous Articles
DAI Guangxin1, WANG Hui2, WANG Lianlei2, LIU Xinyu2, ZHANG Menghua1, HUANG Weijie1
CLC Number:
| [1] Li Y, Zheng S, Wu YX, et al. Trends of surgical treatment for spinal degenerative disease in China: a cohort of 37, 897 inpatients from 2003 to 2016[J]. Clin Interv Aging, 2019, 14: 361-366. doi:10.2147/CIA.S191449 [2] Salsali M, Sheikhhoseini R, Sayyadi P, et al. Association between physical activity and body posture: a systematic review and meta-analysis[J]. BMC Public Health, 2023, 23(1): 1670. doi:10.1186/s12889-023-16617-4 [3] Samartzis D, Borthakur A, Belfer I, et al. Novel diagnostic and prognostic methods for disc degeneration and low back pain[J]. Spine J, 2015, 15(9): 1919-1932. [4] Lenchik L, Heacock L, Weaver AA, et al. Automated segmentation of tissues using CT and MRI: a systematic review[J]. Acad Radiol, 2019, 26(12): 1695-1706. [5] Martín-Noguerol T, Oñate Miranda M, Amrhein TJ, et al. The role of artificial intelligence in the assessment of the spine and spinal cord[J]. Eur J Radiol, 2023, 161: 110726. doi:10.1016/j.ejrad.2023.110726 [6] Qu B, Cao JP, Qian C, et al. Current development and prospects of deep learning in spine image analysis: a literature review[J]. Quant Imaging Med Surg, 2022, 12(6): 3454-3479. [7] 马信龙, 马剑雄, 杜育任, 等. 医工结合引领骨科“精” “智” 发展之路[J]. 交通医学, 2019, 33(6): 545-547. MA Xinlong, MA Jianxiong, DU Yuren, et al. The combination of medicine and work leads the development of orthopedics “essence” and “intelligence” [J]. Medical Journal of Communications, 2019, 33(6): 545-547. [8] Lee S, Jung JY, Mahatthanatrakul A, et al. Artificial intelligence in spinal imaging and patient care: a review of recent advances[J]. Neurospine, 2024, 21(2): 474-486. [9] Azam MA, Khan KB, Salahuddin S, et al. A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics[J]. Comput Biol Med, 2022, 144: 105253. doi:10.1016/j.compbiomed.2022.105253 [10] 任博文, 韩振川, 吴剑慧, 等. 腰椎椎间融合影像学评价方法的研究进展[J]. 解放军医学院学报, 2022, 43(8): 901-906. REN Bowen, HAN Zhenchuan, WU Jianhui, et al. Research advances in radiographic evaluation methods for lumbar intervertebral fusion[J]. Academic Journal of Chinese PLA Medical School, 2022, 43(8): 901-906. [11] Zhang YD, Dong ZC, Wang SH, et al. Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation[J]. Inf Fusion, 2020, 64: 149-187. doi:10.1016/j.inffus.2020.07.006 [12] Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9): 1323-1341. [13] Zamir SW, Arora A, Khan S, et al. Restormer: efficient transformer for high-resolution image restoration[C] //2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans, LA, USA: IEEE, 2022: 5718-5729. doi:10.1109/CVPR52688.2022.00564 [14] Fournier Q, Caron GM, Aloise D. A practical survey on faster and lighter transformers[J]. ACM Comput Surv, 2023, 55(14s): 1-40. [15] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C] //Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 2015: 234-241. [16] Abdollahi A, Pradhan B, Alamri A. VNet: an end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data[J]. IEEE Access, 2020, 8: 179424-179436. doi:10.1109/ACCESS.2020.3026658 [17] Guo P, Xie GQ, Li RF, et al. Multimodal medical image fusion with convolution sparse representation and mutual information correlation in NSST domain[J]. Complex Intell Syst, 2023, 9(1): 317-328. [18] Tang L, Tian CG, Li LD, et al. Perceptual quality assessment for multimodal medical image fusion[J]. Signal Process Image Commun, 2020, 85: 115852. doi:10.1016/j.image.2020.115852 [19] Huang B, Yang F, Yin MX, et al. A review of multimodal medical image fusion techniques[J]. Comput Math Methods Med, 2020, 8279342. doi:10.1155/2020/8279342 [20] Lévêque L, Outtas M, Liu HT, et al. Comparative study of the methodologies used for subjective medical image quality assessment[J]. Phys Med Biol, 2021, 66(15). doi:10.1088/1361-6560/ac1157 [21] Masood RF, Ahmad Taj I, Khan MB, et al. Deep lear-ning based vertebral body segmentation with extraction of spinal measurements and disorder disease classification[J]. Biomed Signal Process Contr, 2022, 71: 103230. doi:10.1016/j.bspc.2021.103230 [22] Liang YW, Fang YT, Lin TC, et al. The quantitative evaluation of automatic segmentation in lumbar magnetic resonance images[J]. Neurospine, 2024, 21(2): 665-675. [23] Yu LQ, Wang SJ, Li XM, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[C] //Medical image computing and computer assisted intervention-MICCAI 2019: 22nd international conference, Shenzhen, China, October 13-17, 2019, proceedings, part II 22. Springer International Publishing, 2019: 605-613. [24] Li SL, Zhang CY, He XM. Shape-aware semi-supervised 3D semantic segmentation for medical images[C] //Medical image computing and computer assisted intervention-MICCAI 2020: 23rd international conference, Lima, Peru, October 4-8, 2020, proceedings, part I 23. Springer International Publishing, 2020: 552-561. [25] Lou AG, Tawfik K, Yao X, et al. Min-max similarity: a contrastive semi-supervised deep learning network for surgical tools segmentation[J]. IEEE Trans Med Imaging, 2023, 42(10): 2832-2841. [26] Xu H, Ma JY, Jiang JJ, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(1): 502-518. [27] Tan W, Tiwari P, Pandey HM, et al. Multimodal medical image fusion algorithm in the era of big data[J]. Neural Comput Appl, 2025, 37. doi:10.1007/s00521-020-05173-2 [28] Tran VL, Lin HY, Liu HW. Multitask deep learning for segmentation and lumbosacral spine inspection[J]. IEEE Trans Instrum Meas, 2022, 71: 4005910. doi:10.1109/TIM.2022.3184341 [29] Fu J, Li WS, Du J, et al. Multimodal medical image fusion via Laplacian pyramid and convolutional neural network reconstruction with local gradient energy strategy[J]. Comput Biol Med, 2020, 126: 104048. doi:10.1016/j.compbiomed.2020.104048 [30] Muhammad G, Alshehri F, Karray F, et al. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems[J]. Inf Fusion, 2021, 76: 355-375. doi:10.1016/j.inffus.2021.06.007 [31] Dimitri GM, Spasov S, Duggento A, et al. Multimodal and multicontrast image fusion via deep generative models[J]. Inf Fusion, 2022, 88: 146-160. doi:10.1016/j.inffus.2022.07.017 [32] Zhou SK, Greenspan H, Davatzikos C, et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109(5): 820-838. [33] Das P, Pal C, Acharyya A, et al. Deep neural network for automated simultaneous intervertebral disc(IVDs)identification and segmentation of multi-modal MR images[J]. Comput Methods Programs Biomed, 2021, 205: 106074. doi:10.1016/j.cmpb.2021.106074 [34] Pang SM, Pang CL, Zhao L, et al. SpineParseNet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation[J]. IEEE Trans Med Imaging, 2021, 40(1): 262-273. |
| [1] | XUE Fuzhong. Theoretical and methodological framework for multimodal big data cohort design based on AI language representation [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 1-16. |
| [2] | WANG Mengxing, XUE Fuzhong, YANG Fan. Blood glucose concentration prediction method for type 1 diabetes mellitus based on multi-modal cross-attention mechanism fusion [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 41-50. |
| [3] | YANG Fan. Multimodal medical data fusion technology and its application [J]. Journal of Shandong University (Health Sciences), 2025, 63(8): 17-40. |
| [4] | WU Qiqi, CHENG Miaomiao, XIAO Xiaoyan. Multimodal models in the field of kidney disease [J]. Journal of Shandong University (Health Sciences), 2025, 63(10): 117-124. |
| [5] | TANG Yuning, PAN Tianyue, DONG Zhihui, FU Weiguo. Research progress of deep learning in automatic segmentation of aortic images [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 66-73. |
| [6] | SI Haipeng, WANG Chongyi, GONG Guiqing, ZHANG Wencan, GUO Yingjun, WANG Kaibin,FENG Yunze, XU Wanlong, LI Le. Application progress of enhanced recovery after surgery in spine surgery [J]. Journal of Shandong University (Health Sciences), 2024, 62(10): 8-17. |
| [7] | ZHAO Geng, WANG Lianlei, WANG Hongwei, LIU Xinyu. Biomechanical effects of different load-carrying ways on lumbar spine [J]. Journal of Shandong University (Health Sciences), 2023, 61(6): 70-78. |
| [8] | LIU Yajun, YUAN Qiang, WU Jingye, HAN Xiaoguang, LANG Zhao, ZHANG Yong. Preliminary exploration of automatic planning of lumbar pedicle screws based on cone-beam CT in 130 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 80-89. |
| [9] | Fuxin DU,Tichong ZHANG,Qianqian LI,Rui SONG. Research advances of spine surgery robot [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 46-56. |
| [10] | Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73. |
| [11] | DING Jinyong, XU Jixi, TAN Chengshuang, LIU Juncheng, LI Mingbo, XIE Weixing, REN Dongcheng. Finite element evaluation of different facet tropism criteria [J]. Journal of Shandong University (Health Sciences), 2020, 58(6): 97-103. |
| [12] | ZHAO Jian, HAN Xiaoling,WANG Gang, LIU Jiang, ZHOU Jiahui, WANG Haifeng, JIANG Zhiwei, LI Jieshou. Effects of multimodal analgesia on the intestinal function of 45 patients who received robotic distal gastrectomy [J]. Journal of Shandong University (Health Sciences), 2019, 57(9): 43-47. |
| [13] | ZHOU Jiahui, WANG Gang, LIU Jiang, ZHAO Jian, WANG Haifeng, JIANG Zhiwei. Effects of multimodal analgesia under the guidance of enhanced recovery after open surgery on postoperative recovery of patients with colon cancer [J]. Journal of Shandong University (Health Sciences), 2019, 57(9): 38-42. |
| [14] | JIANG Zhiwei, ZHOU Jiahui, CHENG Hui. Role of multimodal analgesia in enhanced recovery after surgery [J]. Journal of Shandong University (Health Sciences), 2019, 57(9): 1-4. |
| [15] | WANG Haifeng, WANG Feng, TAN Bingyi, HAN Shijie, XU Xiqiang, WANG Dachuan. Diagnosis and treatment of lumbar facet cysts [J]. Journal of Shandong University (Health Sciences), 2019, 57(5): 56-61. |
|
||