Journal of Shandong University (Health Sciences) ›› 2026, Vol. 64 ›› Issue (2): 50-65.doi: 10.6040/j.issn.1671-7554.0.2025.0256
• Preclinical Medicine • Previous Articles
ZOU Yujin1,2, WAN Yi1,2, JI Zhenbing1,2, LIANG Xichang1,2
CLC Number:
| [1] Li SZ, Zhang H, Liu JX, et al. Targeted therapy for osteosarcoma: a review[J]. J Cancer Res Clin Oncol, 2023, 149(9): 6785-6797. [2] Jing ZH, Ni RH, Wang JD, et al. Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel[J]. Bioact Mater, 2021, 6(12): 4542-4557. [3] Wang ZL, Geest ICV, Leeuwenburgh SC, et al. Bifunctional bone substitute materials for bone defect treatment after bone tumor resection[J]. Mater Today Bio, 2023, 23: 100889. doi: 10.1016/j.mtbio.2023.100889 [4] Wu ZZ, Tian QQ, Wang JN, et al. A bone implant with NIR-responsiveness for eliminating osteosarcoma cells and promoting osteogenic differentiation of BMSCs[J]. Colloids Surf B Biointerfaces, 2022, 211: 112296. doi: 10.1016/j.colsurfb.2021.112296 [5] Kelly CN, Wang T, Crowley J, et al. High-strength, porous additively manufactured implants with optimized mechanical osseointegration[J]. Biomaterials, 2021, 279: 121206. doi: 10.1016/j.biomaterials.2021.121206 [6] Wu KM, Liu MY, Li N, et al. Chitosan-miRNA functionalized microporous titanium oxide surfaces via a layer-by-layer approach with a sustained release profile for enhanced osteogenic activity[J]. J Nanobiotechnology, 2020, 18(1): 127. doi: 10.1186/s12951-020-00674-7 [7] Zheng YH, Han Q, Wang JC, et al. Promotion of osseo-integration between implant and bone interface by titanium alloy porous scaffolds prepared by 3D printing[J]. ACS Biomater Sci Eng, 2020, 6(9): 5181-5190. [8] Bordea IR, Candrea S, Alexescu GT, et al. Nano-hydroxyapatite use in dentistry: a systematic review[J]. Drug Metab Rev, 2020, 52(2): 319-332. [9] Duan HY, Cao CL, Wang XL, et al. Magnesium-alloy rods reinforced bioglass bone cement composite scaffolds with cortical bone-matching mechanical properties and excellent osteoconductivity for load-bearing bone in vivo regeneration[J]. Sci Rep, 2020, 10(1): 18193. doi: 10.1038/s41598-020-75328-7 [10] Huang Y, Zhang YX, Li MY, et al. Physicochemical, osteogenic and antimicrobial properties of graphene oxide reinforced silver/strontium-doped hydroxyapatite on titanium for potential orthopedic applications[J]. Surf Coat Technol, 2022, 446: 128788. doi: 10.1016/j.surfcoat.2022.128788 [11] Sarraf M, Rezvani Ghomi E, Alipour S, et al. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications[J]. Biodes Manuf, 2022, 5(2): 371-395. [12] Smrke A, Anderson PM, Gulia A, et al. Future directions in the treatment of osteosarcoma[J]. Cells, 2021, 10(1): 172. doi: 10.3390/cells10010172 [13] Lee J, Choi MK, Song IS. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting[J]. Pharmaceuticals(Basel), 2023, 16(6): 802. doi: 10.3390/ph16060802 [14] Abdel-Megeed RM, Ghanem HZ, Kadry MO. Alleviation of doxorubicin adverse effects via loading into various drug-delivery systems: a comparative study[J]. Ther Deliv, 2024, 15(6): 413-426. [15] Kong XL, Chen L, Li B, et al. Applications of oxidized alginate in regenerative medicine[J]. J Mater Chem B, 2021, 9(12): 2785-2801. [16] Zanotti A, Baldino L, Cardea S, et al. Production of agarose-hydroxyapatite composites via supercritical gel drying, for bone tissue engineering[J]. Molecules, 2024, 29(11): 2498. doi: 10.3390/molecules29112498 [17] Stojkovska J, Zvicer J, Andrejevic M, et al. Novel composite scaffolds based on alginate and Mg-doped calcium phosphate fillers: enhanced hydroxyapatite formation under biomimetic conditions[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(12): 2079-2090. [18] Reakasame S, Dranseikiene D, Schrüfer S, et al. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability[J]. Mater Sci Eng C Mater Biol Appl, 2021, 128: 112336. doi: 10.1016/j.msec.2021.112336 [19] Ghorbani F, Kim M, Monavari M, et al. Mussel-inspired polydopamine decorated alginate dialdehyde-gelatin 3D printed scaffolds for bone tissue engineering application[J]. Front Bioeng Biotechnol, 2022, 10: 940070. doi: 10.3389/fbioe.2022.940070 [20] Li CR, Zhang W, Nie YY, et al. Time-sequential and multi-functional 3D printed MgO2/PLGA scaffold deve-loped as a novel biodegradable and bioactive bone substitute for challenging postsurgical osteosarcoma treatment[J]. Adv Mater, 2024, 36(34): e2308875. doi: 10.1002/adma.202308875 [21] Zhou W, Liu Y, Nie X, et al. Peptide-based inflammation-responsive implant coating sequentially regulates bone regeneration to enhance interfacial osseointegration[J]. Nat Commun, 2025, 16(1): 3283. doi: 10.1038/s41467-025-58444-8 [22] Wu MH, Liu HF, Li D, et al. Smart-responsive multifunctional therapeutic system for improved regenerative microenvironment and accelerated bone regeneration via mild photothermal therapy[J]. Adv Sci(Weinh), 2024, 11(2): e2304641. doi: 10.1002/advs.202304641 [23] Kondi S, Gowda SR. Principles of bone healing[J]. Surg Oxf, 2023, 41(10): 625-631. [24] 宁方栋, 付美婷, 张慧莹, 等. 聚合物纳米微球增韧水凝胶的制备与表征[J]. 高分子通报, 2023(1): 91-98. NING Fangdong, FU Meiting, ZHANG Huiying, et al. Preparation and characterization of tough hydrogels reinforced by polymeric nanospheres[J]. Polymer Bulletin, 2023(1): 91-98. [25] Jing ZH, Yuan WQ, Wang JD, et al. Simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects[J]. Bioact Mater, 2023, 33: 223-241. doi: 10.1016/j.bioactmat.2023.11.001 [26] Chu FC, Wang ZX, Zhang DZ, et al. Research on the osteogenic properties of 3D-printed porous titanium alloy scaffolds loaded with Gelma/PAAM-ZOL composite hydrogels[J]. Int J Biol Macromol, 2024, 276(2): 134050. doi: 10.1016/j.ijbiomac.2024.134050 [27] Cai BY, Huang LZ, Zhou XK, et al. Black phosphorus-incorporated novel Ti-12Mo-10Zr implant for multimodal treatment of osteosarcoma[J]. Biometals, 2024, 37(1): 131-142. [28] Safari B, Aghazadeh M, Roshangar L, et al. A bioactive porous scaffold containing collagen/phosphorous-modified polycaprolactone for osteogenesis of adipose-derived mesenchymal stem cells[J]. Eur Polym J, 2022, 171: 111220. doi: 10.1016/j.eurpolymj.2022.111220 [29] Li NB, Sun SJ, Bai HY, et al. Micro/nanoscale multistructures of oxide layers on Ti6Al4V achieved by acid etching and induction heating for high osteogenic activity in vitro[J]. Surf Coat Technol, 2020, 393: 125816. doi: 10.1016/j.surfcoat.2020.125816 [30] Liu JQ, Xiao Q, Xiao JN, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3. doi: 10.1038/s41392-021-00762-6 [31] Chastney MR, Kaivola J, Leppänen VM, et al. The role and regulation of integrins in cell migration and invasion[J]. Nat Rev Mol Cell Biol, 2025, 26(2): 147-167. [32] Pang XC, He X, Qiu ZW, et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 1. doi: 10.1038/s41392-022-01259-6 [33] Nour S, Shabani S, Swiderski K, et al. Engineering nanoclusters of cell adhesive ligands on biomaterial surfaces: superior cell proliferation and myotube formation for skeletal muscle tissue regeneration[J]. Adv Healthc Mater, 2025, 14(2): e2402991. doi: 10.1002/adhm.202402991 [34] Ji ZB, Wan Y, Zhao ZH, et al. Polydopamine and magnesium ions loaded 3D-printed Ti-6Al-4V implants coating with enhanced osteogenesis and antibacterial abilities[J]. Adv Mater Technol, 2022, 7(12): 2200598. doi: 10.1002/admt.202200598 [35] 纪振冰, 万熠, 赵梓贺, 等. 水热温度和时间对3D打印Ti-6Al-4V植入体表面理化性能的影响[J]. 表面技术, 2022, 51(9): 288-299. JI Zhenbing, WAN Yi, ZHAO Zihe, et al. Effects of hydrothermal temperature and time on surface physical and chemical properties of 3D printed Ti-6Al-4V implants[J]. Surface Technology, 2022, 51(9): 288-299. [36] Sirdeshmukh N, Dongre G. Achieving controlled topo-graphy and wettability through laser surface texturing of Ti6Al4V for bioengineering applications[J]. Results Eng, 2023, 17: 100898. doi: 10.1016/j.rineng.2023.100898 [37] Mu?瘙塂at V, Anghel EM, Zaharia A, et al. A chitosan-agarose polysaccharide-based hydrogel for biomimetic remineralization of dental enamel[J]. Biomolecules, 2021, 11(8): 1137. doi: 10.3390/biom11081137 [38] Hoveidaei AH, Sadat-Shojai M, Mosalamiaghili S, et al. Nano-hydroxyapatite structures for bone regenerative medicine: cell-material interaction[J]. Bone, 2024, 179: 116956. doi: 10.1016/j.bone.2023.116956 [39] Zhu YS, Gu Y, Jiang C, et al. Osteonectin regulates the extracellular matrix mineralization of osteoblasts through P38 signaling pathway[J]. J Cell Physiol, 2020, 235(3): 2220-2231. [40] Aglan HA, Ahmed HH, Mahmoud NS, et al. Nanotechnological applications hold a pivotal position in boosting stem cells osteogenic activity: in vitro and in vivo studies[J]. Appl Biochem Biotechnol, 2020, 190(2): 551-573. [41] Park SC, Yang WS, Ahn JY, et al. Improved osteogenesis of human adipose-derived stromal cells on hydroxyapatite-mineralized graphene film[J]. 2D Mater, 2021, 8(3): 035012. doi: 10.1088/2053-1583/abe924 [42] Khotib J, Gani MA, Budiatin AS, et al. Signaling pathway and transcriptional regulation in osteoblasts during bone healing: direct involvement of hydroxyapatite as a biomaterial[J]. Pharmaceuticals(Basel), 2021, 14(7): 615. doi: 10.3390/ph14070615 [43] Bao YH, Guo ZF, Li JT, et al. Combination antitumor therapy based on codelivery nanosystems of doxorubicin [J]. Prog Chem, 2023, 35(8):1123-1135. [44] Bardajee GR, Jafari R. Synthesis of interpenetrating networks nanogels based on sodium alginate and 2-(dimethy-lamino)ethyl methacrylate and application as drug release of the anticancer doxorubicin(DOX)[J]. J Polym Res, 2023, 30(10): 395. doi: 10.1007/s10965-023-03769-5 [45] Tzankova V, Tosheva A, Stefanova D, et al. Double encapsulation of doxorubicin and quercetin in nanoparticles enhances cytotoxicity in lymphoma cells and reduces doxorubicin cardiotoxicity[J]. J Drug Deliv Sci Technol, 2024, 102: 106421. doi: 10.1016/j.jddst.2024.106421 [46] Yayan J, Franke KJ, Berger M, et al. Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review[J]. Mol Biol Rep, 2024, 51(1): 165. doi: 10.1007/s11033-023-08920-5 [47] Pang XC, He X, Qiu ZW, et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 1. doi: 10.1038/s41392-022-01259-6 [48] 张锋, 戴杰, 任灵飞, 等. 纯钛钛片表面不同生物大分子涂层的比较研究[J]. 山东大学学报(医学版), 2015, 53(8): 38-43. ZHANG Feng, DAI Jie, REN Lingfei, et al. Comparative study of different biomolecule coatings on the surface of pure titanium disc[J]. Journal of Shandong University(Health Sciences), 2015, 53(8): 38-43. [49] Niu JZ, Guo YH, Li K, et al. Improved mechanical, bio-corrosion properties and in vitro cell responses of Ti-Fe alloys as candidate dental implants[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111917. doi: 10.1016/j.msec.2021.111917 [50] Hafezi M, Nouri Khorasani S, Khalili S, et al. Shear thinning and self-healing behavior of an IPN nanocomposite based on gelatin methacryloyl/alginate/nano-clay for cartilage tissue engineering application[J]. Eur Polym J, 2025, 226: 113761. doi: 10.1016/j.eurpolymj.2025.113761 [51] Wang H, Yang L, Yang YN. A review of sodium alginate-based hydrogels: structure, mechanisms, applications, and perspectives[J]. Int J Biol Macromol, 2025, 292: 139151. doi: 10.1016/j.ijbiomac.2024.139151 [52] Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery[J]. J Control Release, 2020, 326: 150-163. doi: 10.1016/j.jconrel.2020.06.012 [53] Wang RX, Liu WF, Wang Q, et al. Anti-osteosarcoma effect of hydroxyapatite nanoparticles both in vitro and in vivo by downregulating the FAK/PI3K/Akt signaling pathway[J]. Biomater Sci, 2020, 8(16): 4426-4437. |
| [1] | CAO Qianqian, JIANG Yuhua, LI Yuliang, YANG Ruijie, LIU Lu, ZHANG Xile, WANG Junjie. A dosimetric analysis of cervical metastases between radioactive 125I seeds implantation and external beam radiation therapy [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(7): 55-60. |
| [2] | XU Liangzhi1, CHEN Kunlun2. Inhibitory effect and its mechanism of emodin on the proliferation of human osteosarcoma cell line [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(6): 37-40. |
| [3] | QI Lei, LI Jian-min, XIANG Long-zhan, YANG Qiang. Effects of high-concentration distilled water and cisplatin on osteosarcoma cells in a local and shorttime manner [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(2): 75-78. |
| [4] | WEI Hong,LI Jin-song,LIU Wen-jun. Expression and significance of c-kit in conventional osteosarcoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2007, 45(3): 243-245. |
| [5] | LI Jianmin, LI Zhenfeng. Advances and challenges of total en bloc spondylectomy for lumbar tumors [J]. Journal of Shandong University (Health Sciences), 2019, 57(5): 7-12. |
| [6] |
.
Etiologycal and prophylacticotherapeutic analysis of synovial chondramatosis around the priximal end of the nail secondary to internal fixation of fractures [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2009, 47(9): 98-100. |
|
||