Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (5): 72-78.doi: 10.6040/j.issn.1671-7554.0.2024.0061

• Clinical Medicine • Previous Articles    

Expression and correlation of α5-nAChR and MHC-I in lung adenocarcinoma

WANG Jingting, WANG Jing, LU Yi, LI Jingtan, LI Qiang, JIA Yanfei, MA Xiaoli   

  1. Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
  • Published:2024-05-29

Abstract: Objective To investigate the expression and correlation between alpha5-nicotinic acetylcholine receptor(α5-nAChR)and the major histocompatibility complex class I molecule(MHC-I)in lung adenocarcinoma. Methods TCGA database were used to study the expression, correlation, and clinical significance of encoding α5-nAChR gene(CHRNA5)and encoding MHC-I gene(HLA-B)in lung adenocarcinoma. The expressions of α5-nAChR and MHC-I were tested by immunohistochemistry staining in human lung adenocarcinoma specimans and nude mouse lung adenocarcinoma xenografts tissues. Furthermore, the expression and correlation of FHIT and MHC-I at different expression levels of α5-nAChR were detected by Western blotting in human A549 cells and mice LLC cells. Results Patients with lung adenocarcinoma with high expression of CHRNA5 or low expression of HLA-B had reduced survival, and CHRNA5 was negatively correlated with the expression of HLA-B(P<0.05). The expressions of α5-nAChR and MHC-I were negatively correlated in human lung adenocarcinoma and nude mouse lung adenocarcinoma xenografts tissues(P<0.05). In lung adenocarcinoma cells, the expression of α5-nAChR was negatively correlated with the expressions of FHIT and MHC-I, and the expression of FHIT and MHC-I was positively correlated(P<0.05). Conclusion The expressions of α5-nAChR and MHC-I are negatively correlated and involved in lung adenocarcinogenesis.

Key words: Alpha5-nicotinic acetylcholine receptor, Fragile histidine triad, Major histocompatibility complex class I molecule, Lung adenocarcinoma, Correlation

CLC Number: 

  • R574
[1] Mochizuki A, Shiraishi K, Honda T, et al. Passive smoking-induced mutagenesis as a promoter of lung carcinogenesis[J]. J Thorac Oncol, 2024: S1556-S0864(24)00074-1. doi:10.1016/j.jtho.2024.02.006.
[2] Liao KM, Shu CC, Liang FW, et al. Risk factors for pulmonary tuberculosis in patients with lung cancer: a retrospective cohort study[J]. J Cancer, 2023, 14(4): 657-664.
[3] He ZH, Xu YQ, Rao ZH, et al. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine[J]. Sci Total Environ, 2024, 912: 169604. doi:10.1016/j.scitotenv.2023.169604.
[4] Zhang Q, Jia Y, Pan P, et al. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer[J]. Carcinogenesis, 2022, 43(4): 393-404.
[5] Shulepko MA, Bychkov ML, Shlepova OV, et al. Human secreted protein SLURP-1 abolishes nicotine-induced proliferation, PTEN down-regulation and α7-nAChR expression up-regulation in lung cancer cells[J]. Int Immunopharmacol, 2020, 82: 106303. doi:10.1016/j.intimp.2020.106303.
[6] Chen LS, Hung RJ, Baker T, et al. CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis: a meta-analysis[J]. J Natl Cancer Inst, 2015, 107(5): djv100. doi:10.1093/jnci/djv100.
[7] 贾颖, 祖珊珊, 郏雁飞, 等. CHRNA5基因表达下调对肺癌细胞VEGF表达的影响[J]. 山东大学学报(医学版), 2014, 52(2): 12-15. JIA Ying, ZU Shanshan, JIA Yanfei, et al. Effect of down-regulated CHRNA5 gene expression on VEGF expression of lung cancer[J]. China Industrial Economics, 2014, 52(2): 12-15.
[8] Zhu P, Jin ZX, Kang GY, et al. Alpha5 nicotinic acetylcholine receptor mediated immune escape of lung adenocarcinoma via STAT3/Jab1-PD-L1 signalling[J]. Cell Commun Signal, 2022, 20(1): 121. doi:10.1186/s12964-022-00934-z.
[9] Jiao Y, Kang GY, Pan P, et al. Acetylcholine promotes chronic stress-induced lung adenocarcinoma progression via α5-nAChR/FHIT pathway[J]. Cell Mol Life Sci, 2023, 80(5): 119. doi:10.1007/s00018-023-04742-7.
[10] Niu ZY, Jiang DM, Shen JY, et al. Potential role of the fragile histidine triad in cancer evo-dev[J]. Cancers, 2023, 15(4): 1144. doi:10.3390/cancers15041144.
[11] Pulido M, Chamorro V, Romero I, et al. Restoration of MHC-I on tumor cells by fhit transfection promotes immune rejection and acts as an individualized immunotherapeutic vaccine[J]. Cancers, 2020, 12(6): 1563. doi:10.3390/cancers12061563.
[12] Liu YE, Wang YJ, Yang YR, et al. Emerging phagocytosis checkpoints in cancer immunotherapy[J]. Signal Transduct Target Ther, 2023, 8(1): 104. doi:10.1038/s41392-023-01365-z.
[13] Kobayashi KS, van den Elsen PJ. NLRC5: a key regulator of MHC class I-dependent immune responses[J]. Nat Rev Immunol, 2012, 12(12): 813-820.
[14] Yang S, Tang DF, Zhao YC, et al. Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival[J]. Cancer Immunol Immunother, 2021, 70(10): 2819-2833.
[15] Ouspenskaia T, Law T, Clauser KR, et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer[J]. Nat Biotechnol, 2022, 40(2): 209-217.
[16] Alsharairi NA. Quercetin derivatives as potential therapeutic agents: an updated perspective on the treatment of nicotine-induced non-small cell lung cancer[J]. Int J Mol Sci, 2023, 24(20): 15208. doi:10.3390/ijms242015208.
[17] 段依霜. 吸烟人群相关基因与肺癌发生发展的综述[J]. 实用预防医学, 2024, 31(3): 380-385. DUAN Yishuang. Review on genes related to smoking population and occurrence and development of lung cancer[J]. Practical Preventive Medicine, 2024, 31(3): 380-385.
[18] Alsharairi NA. Insights into the mechanisms of action of proanthocyanidins and anthocyanins in the treatment of nicotine-induced non-small cell lung cancer[J]. Int J Mol Sci, 2022, 23(14): 7905. doi:10.3390/ijms23147905.
[19] Kyte SL, Gewirtz DA. The influence of nicotine on lung tumor growth, cancer chemotherapy, and chemotherapy-induced peripheral neuropathy[J]. J Pharmacol Exp Ther, 2018, 366(2): 303-313.
[20] Romero I, Martinez M, Garrido C, et al. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells[J]. J Pathol, 2012, 227(3): 367-379.
[21] Mineur YS, Soares AR, Etherington IM, et al. Pathophysiology of nAChRs: limbic circuits and related disorders[J]. Pharmacol Res, 2023, 191: 106745. doi:10.1016/j.phrs.2023.106745.
[22] Liao YC, Cheng TC, Tu SH, et al. Tumor targeting and therapeutic assessments of RNA nanoparticles carrying α9-nAChR aptamer and anti-miR-21 in triple-negative breast cancers[J]. Mol Ther Nucleic Acids, 2023, 33: 351-366. doi:10.1016/j.omtn.2023.07.013.
[23] Li Q, Li JT, Wang JT, et al. PLEK2 mediates metastasis and invasion via α5-nAChR activation in nicotine-induced lung adenocarcinoma[J]. Mol Carcinog, 2024, 63(2): 253-265.
[24] Sari G, Rock KL. Tumor immune evasion through loss of MHC class-I antigen presentation[J]. Curr Opin Immunol, 2023, 83: 102329. doi:10.1016/j.coi.2023.102329.
[25] 李慧萍, 徐秀. 免疫分子MHC-Ⅰ在小鼠不同脑区的分布[J]. 复旦学报(医学版), 2021, 48(1): 41-46. LI Huiping, XU Xiu. Expression pattern of MHC-Ⅰ in different brain regions of mouse[J]. Fudan University Journal of Medical Sciences, 2021, 48(1): 41-46.
[26] da Silva IL, Montero-Montero L, Ferreira E, et al. New insights into the role of Qa-2 and HLA-G non-classical MHC-I complexes in malignancy[J]. Front Immunol, 2018, 9: 2894. doi:10.3389/fimmu.2018.02894.
[27] Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation[J]. Front Immunol, 2021, 12: 636568. doi:10.3389/fimmu.2021.636568.
[1] MENG Jianli, WANG Qinggang. Expression and potential mechanism of VPS72 in lung adenocarcinoma/ squamous cell carcinoma by integrated bioinformatics analysis [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 40-49.
[2] LIU Shibiao, ZHANG Shujun, LI Peilong, DU Lutao, WANG Chuanxin. The cg20657709 site methylation in the early detection of lung adenocarcinoma [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 18-25.
[3] ZHAO Qidi, WANG Kai, ZHAO Xiaogang, YAN Tao, WANG Yadong, DU Jiajun. Constructing and validating a prognostic model for patients with stage IIIB non-small cell lung cancer based on SEER database [J]. Journal of Shandong University (Health Sciences), 2023, 61(10): 23-37.
[4] LIU Liwen, MA Jun, LI Peizheng, ZHANG Xiufang, LIU Yiming. Caregiver burden and influencing factors of 128 patients with Parkinsons disease [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 45-49.
[5] ZHENG Haotian, WANG Guanghui, ZHAO Xiaogang, WANG Yadong, ZENG Yukai, DU Jiajun. A prognostic risk model for LKB1 mutant lung adenocarcinoma based on aberrant DNA methylation sites [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 51-58.
[6] FANG Qidi, YANG Shuxia, QI Chang, CHENG Chuanlong, HAN Chuang, LIU Ying,CUI Feng, LI Xiujun. Spatio-temporal distribution of stroke in Zibo City in 2019 based on township scale [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 81-88.
[7] CHENG Chuanlong, YANG Shuxia, SHE Kaili, FANG Qidi, HAN Chuang, LIU Ying, CUI Feng, LI Xiujun. Epidemiological characteristics and influencing factors of malignant tumors in Zibo, 2018 [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 102-108.
[8] GAO Jinmei, ZHANG Xianglian, LIU Tieju. Correlation between plasma D-dimer and metastasis in 109 cases of bladder cancer [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 98-102.
[9] ZHANG Jiahao, LIU Dongxu. Transverse characteristics of skeletal class Ⅱ malocclusion molars and basal bone in 70 cases with different vertical facial types [J]. Journal of Shandong University (Health Sciences), 2021, 59(2): 76-82.
[10] CHAI Xiaoxue, YE Hui, LYU Xinran, DING Xuchao, ZHEN Qiulai, DU Juan, CAO Lili. Prognostic value of POU4F3 in 118 patients with lung adenocarcinoma and its effect on migration of lung adenocarcinoma cells [J]. Journal of Shandong University (Health Sciences), 2021, 59(11): 8-18.
[11] PANG Zhaofei, LIU Yong, ZHAO Xiaogang, YAN Tao, CHEN Xiaowei, DU Jiajun. Construction of a stemness-based scoring model predicting the efficacy of immunotherapy in lung adenocarcinoma based on public databases [J]. Journal of Shandong University (Health Sciences), 2021, 59(11): 19-28.
[12] Shuwei LIU,Yunxia LOU,Yuchun TANG. The construction, asymmetry and genetic correlation of 4D digital brain atlas [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 28-33.
[13] YANG Xiuting, LIU Qigong, ZUO Ping, LIU Zhengxiang, ZUO Houjuan. Effect of CD151-MUT mutation on migration of lung adenocarcinoma cell line A549 and its mechanism [J]. Journal of Shandong University (Health Sciences), 2020, 58(3): 81-86.
[14] JIA Yan, LI Chunyu, LIU Lili, SHE Kaili, LIU Tingxuan, ZHU Yuchen, QI Chang, ZHANG Dandan, WANG Xu, CHEN Enfu, LI Xiujun. Epidemic characteristics and spatial analysis of COVID-19 in Zhejiang Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 66-73.
[15] CHEN Hongyan, MA Yuanyuan, SUN Hukui. Correlation between SUVmax of 18F-FDG PET/CT and programmed cell death-ligand 1 expression in lung cancer patients: a Meta-analysis [J]. Journal of Shandong University (Health Sciences), 2019, 57(6): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!