您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (2): 77-83.doi: 10.6040/j.issn.1671-7554.0.2024.0285

• 临床医学 • 上一篇    下一篇

阑尾切除术与结直肠癌发病风险关联的孟德尔随机化研究

常宇1,胡云峰1,王会丰2,郭静1,张跳1,郝雅琴1,刘雨1   

  1. 延安大学附属医院 1. 放射治疗科;2.消化内科, 陕西 延安 716000
  • 出版日期:2025-03-10 发布日期:2025-03-07
  • 通讯作者: 胡云峰. E-mail:88136095@qq.com
  • 基金资助:
    国家自然科学基金(82060452);延安市科技计划项目(2022SLSFGG-036)

A mendelian randomization study on the association between appendectomy and the risk of colorectal cancer

CHANG Yu1, HU Yunfeng1, WANG Huifeng2, GUO Jing1, ZHANG Tiao1, HAO Yaqin1, LIU Yu1   

  1. 1. Department of Radiotherapy;
    2. Department of Gastroenterology, Yanan University Affiliated Hospital, Yanan 716000, Shaanxi, China
  • Online:2025-03-10 Published:2025-03-07

摘要: 目的 采用两样本孟德尔随机化(mendelian randomization, MR)方法在遗传水平上探究阑尾切除术与结直肠癌之间的因果关系。 方法 采用逆方差加权法(inverse variance weighted, IVW)、MR Egger、加权中位数、简单模式和加权模式等方法进行分析。利用全基因组关联研究(genome-wide association study, GWAS)汇总数据,评估阑尾切除术与结直肠癌之间的因果关系。采用留一法、Cochrans Q检验,MR-Egger回归截距项检验、MR-PRESSO检验进行敏感性分析,评估工具变量的异质性、多效性和稳定性。 结果 随机效应 IVW 结果显示,阑尾切除术与结直肠癌无遗传因果关系(OR=1.13, 95%CI:0.29~4.36, P=0.86)。MR Egger、加权中位数、简单模式和加权模式的分析结果与随机效应 IVW 一致。无异质性、水平多效性。MR分析结果不受单个SNP的影响。 结论 阑尾切除术与结直肠癌在遗传水平上无因果关系。

关键词: 阑尾切除术, 结直肠癌, 孟德尔随机化, 遗传水平, 因果推断

Abstract: Objective To explore the causal relationship between appendectomy and colorectal cancer at the genetic level by a two-sample Mendelian randomization(MR). Methods The analysis was conducted using methods such as inverse variance weighting(IVW), MR Egger, weighted median, and both simple and weighted modes. Using summary data from genome-wide association studies(GWAS), the causal relationship between appendectomy and colorectal cancer was assessed. Sensitivity analyses were performed using leave-one-out analysis, Cochrans Q test, MR-Egger regression intercept test, and MR-PRESSO test to evaluate the heterogeneity, pleiotropy, and stability of the instrumental variables. Results The random-effects IVW results indicated that appendectomy hasd no genetic causal relationship with colorectal cancer(OR=1.13, 95%CI:0.29-4.36, P=0.86). The analysis results from MR Egger, weighted median, simple mode, and weighted mode were consistent with those of the random-effects IVW. There was no heterogeneity, horizontal pleiotropy. The MR analysis results were not influenced by any single SNP. Conclusion There is no causal relationship between appendectomy and colorectal cancer at the genetic level.

Key words: Appendectomy, Colorectal cancer, Mendelian randomization, Genetic level, Causal inference

中图分类号: 

  • R735.34
[1] Qu RZ, Ma YP, Zhang ZP, et al. Increasing burden of colorectal cancer in China[J]. Lancet Gastroenterol Hepatol, 2022, 7(8): 700.
[2] Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480.
[3] Vitetta L, Chen JZ, Clarke S. The vermiform appendix: an immunological organ sustaining a microbiome inoculum[J]. Clin Sci, 2019, 133(1): 1-8.
[4] Constantin M, Petrescu L, Mătanie C, et al. The vermiform appendix and its pathologies[J]. Cancers, 2023, 15(15): 3872. https://doi.org/10.3390/cancers15153872.
[5] Rothwell JA, Mori N, Artaud F, et al. Colorectal cancer risk following appendectomy: a Pooled analysis of three large ProsPective cohort studies[J]. Cancer Commun(Lond), 2022, 42(5): 486-489.
[6] Liu Z, Ma X, Zhu C, et al. Risk of colorectal cancer after aPPendectomy: a systematic review and meta-analysis[J]. J Gastroenterol HePatol, 2023, 38(3): 350-358.
[7] Wu SC, Chen WT, Muo CH, et al. Association between appendectomy and subsequent colorectal cancer development: an Asian population study[J]. PLoS One, 2015, 10(2): e0118411. doi:10.1371/journal.pone.0118411.
[8] Shi F, Liu G, Lin Y, et al. Altered gut microbiome composition by appendectomy contributes to colorectal cancer[J]. Oncogene. 2023, 42(7): 530-540.
[9] Yun Z, Guo Z, Li X, et al. Genetically predicted 486 blood metabolites in relation to risk of colorectal cancer: a Mendelian randomization study[J]. Cancer Med, 2023, 12(12): 13784-13799.
[10] Suzuki S, Goto A, Nakatochi M, et al. Body mass index and colorectal cancer risk: a Mendelian randomization study[J]. Cancer Sci, 2021, 112(4): 1579-1588.
[11] Wang L, Cao W, Xi MH, et al. Appendectomy and the risk of neurodegenerative diseases: a two-sample Mendelian randomization study[J]. Asian J Surg, 2023, 47(1): 673-674.
[12] Lyon MS, Andrews SJ, Elsworth B, et al. The variant call format provides efficient and robust storage of GWAS summary statistics[J]. Genome Biol, 2021, 22(1): 32. doi:10.1186/s13059-020-02248-0.
[13] Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes[J]. Nat Genet, 2021, 53(10): 1415-1424.
[14] Li YW, Ye D, Zhou WK, et al. Alcohol consumption and colorectal cancer risk: a Mendelian randomization study[J]. Front Genet, 2022, 13: 967229. doi:10.3389/fgene.2022.967229.
[15] 常鑫, 刘世佳, 韩璐. 服用阿司匹林与子宫内膜癌发病风险的孟德尔随机化关系[J]. 山东大学学报(医学版), 2023, 61(10): 58-62, 82. CHANG Xin, LIU Shijia, HAN Lu. A Mendelian randomization study of aspirin use and the risk of endometrial cancer[J]. Journal of Shandong University(Health Sciences), 2023, 61(10): 58-62, 82.
[16] Yang MY, Wan XJ, Zheng HS, et al. No evidence of a genetic causal relationship between ankylosing spondylitis and gut microbiota: a two-sample Mendelian randomization study[J]. Nutrients, 2023, 15(4): 1057. doi:10.3390/nu15041057.
[17] Murphy N, Song MY, Papadimitriou N, et al. Associations between glycemic traits and colorectal cancer: a Mendelian randomization analysis[J]. J Natl Cancer Inst, 2022, 114(5): 740-752.
[18] Cho YA, Lee J, Oh JH, et al. Genetic risk score, combined lifestyle factors and risk of colorectal cancer[J]. Cancer Res Treat, 2019, 51(3): 1033-1040.
[19] OSullivan DE, Sutherland RL, Town S, et al. Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2022, 20(6): 1229-1240.
[20] Papadimitriou N, Bull CJ, Jenab M, et al. Separating the effects of early and later life adiposity on colorectal cancer risk: a Mendelian randomization study[J]. BMC Med, 2023, 21(1): 5. doi:10.1186/s12916-022-02702-9.
[21] Sun J, Zhao J, Jiang F, et al. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human Plasma Proteome with genome[J]. Genome Med, 2023, 15(1): 75. doi: 10.1186/s13073-023-01229-9.
[22] Su YN, Hu YF, Xu YW, et al. Genetic causal relationship between age at menarche and benign oesophageal neoplasia identified by a Mendelian randomization study[J]. Front Endocrinol, 2023, 14: 1113765. doi:10.3389/fendo.2023.1113765.
[23] Jung SY, Papp JC, Sobel EM, et al. Mendelian randomization study: the association between metabolic pathways and colorectal cancer risk[J]. Front Oncol, 2020, 10: 1005. doi: 10.3389/fonc.2020.01005.
[24] Chan II, Kwok MK, Schooling CM. Blood pressure and risk of cancer: a Mendelian randomization study[J]. BMC Cancer, 2021, 21(1): 1338. doi:10.1186/s12885-021-09067-x.
[25] Yuan S, Kar S, Carter P, et al. Is type 2 diabetes causally associated with cancer risk? evidence from a two-sample Mendelian randomization study[J]. Diabetes, 2020, 69(7): 1588-1596.
[26] Xiong J, Yang L, Deng YQ, et al. The causal association between smoking, alcohol consumption and risk of bladder cancer: a univariable and multivariable Mendelian randomization study[J]. Int J Cancer, 2022, 151(12): 2136-2143.
[27] Yuan S, Mason AM, Titova OE, et al. Morning chronotype and digestive tract cancers: Mendelian randomization study[J]. Int J Cancer, 2023, 152(4): 697-704.
[28] Chen X, Kong JQ, Diao XY, et al. Depression and prostate cancer risk: a Mendelian randomization study[J]. Cancer Med, 2020, 9(23): 9160-9167.
[29] Tan H, Wang SS, Huang FF, et al. Association between breast cancer and thyroid cancer risk: a two-sample Mendelian randomization study[J]. Front Endocrinol, 2023, 14: 1138149. doi:10.3389/fendo.2023.1138149.
[30] Zhou X, Wang L, Xiao J, et al. Alcohol consumption, dna methylation and colorectal cancer risk: results from pooled cohort studies and mendelian randomization analysis[J]. Int J Cancer, 2022, 151(1): 83-94.
[31] Chen JZ, Sali A, Vitetta L. The gallbladder and vermiform appendix influence the assemblage of intestinal microorganisms[J]. Future Microbiol, 2020, 15: 541-555. doi:10.2217/fmb-2019-0325.
[32] Liang CS, Bai YM, Hsu JW, et al. The risk of Alzheimers disease after acute appendicitis with or without appendectomy[J]. J Am Med Dir Assoc, 2022, 23(4): 601-607.
[33] Shi F, Liu G, Lin Y, et al. Altered gut microbiome composition by appendectomy contributes to colorectal cancer[J]. Oncogene, 2023, 42(7): 530-540.
[34] 高莹, 崔光星. 阑尾功能的再认识及急性阑尾炎的治疗进展[J]. 中国乡村医药, 2020, 27(18): 78-80. GAO Ying, CUI Guangxing. Re-understanding of appendix function and treatment progress of acute appendicitis[J]. Chinese Journal of Rural Medicine and Pharmacy, 2020, 27(18): 78-80.
[35] Arjomand Fard N, Armstrong H, Perry T, et al. Appendix and ulcerative colitis: a key to explaining the pathogenesis and directing novel therapies?[J]. Inflamm Bowel Dis, 2023, 29(1): 151-160.
[36] Quaglio AEV, Grillo TG, De Oliveira ECS, et al. Gut microbiota, inflammatory bowel disease and colorectal cancer[J]. World J Gastroenterol, 2022, 28(30): 4053-4060.
[37] Cheng YW, Ling ZX, Li LJ. The intestinal microbiota and colorectal cancer[J]. Front Immunol, 2020, 11: 615056. doi:10.3389/fimmu.2020.615056.
[38] Lin CZ, Cai XL, Zhang J, et al. Role of gut microbiota in the development and treatment of colorectal cancer[J]. Digestion, 2019, 100(1): 72-78.
[39] Ka zmierczak-Siedlecka K, Daca A, Fic M, et al. Therapeutic methods of gut microbiota modification in colorectal cancer management- fecal microbiota transplantation, prebiotics, probiotics, and synbiotics[J]. Gut Microbes, 2020, 11(6): 1518-1530.
[1] 杨慧,苏士晶,李芬. 基于双向孟德尔随机化法探讨组织蛋白酶与衰弱的因果关联[J]. 山东大学学报 (医学版), 2025, 63(2): 67-76.
[2] 崔倩倩,李金鹏,吴豫丹,侯志平,孙玮螺,崔盼盼,何培元. 粪便miRNA对结直肠进展期腺瘤无创筛查的临床价值[J]. 山东大学学报 (医学版), 2025, 63(2): 43-50.
[3] 王刚,徐鹏演,赵旭安,王海锋,葛苗苗,潘华峰,江志伟. ω-3多不饱和脂肪酸对腹腔镜结直肠癌术后迷走神经和肠功能恢复的影响[J]. 山东大学学报 (医学版), 2025, 63(2): 36-42.
[4] 袁宗怀,潘广晔,迟曰梅,安传国,张永刚. 孟德尔随机化分析低级别浆液性卵巢癌与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2025, 63(1): 99-107.
[5] 张展,李建锋,李燕玲,王博雯,昂文成林龙珠,王鑫,张小明,谢萍. 饮食因素与子痫前期因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2024, 62(8): 59-66.
[6] 冯悦,俞一凡,吴思佳,李洪凯,薛付忠. 内脏脂肪组织与肺部疾病的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2024, 62(7): 48-55.
[7] 王潇,孔文茹,崔伟亮,王姝麒. 羊角棉总生物碱增强氟尿嘧啶对结直肠癌化疗敏感性[J]. 山东大学学报 (医学版), 2024, 62(6): 30-37.
[8] 魏闫若雪,李梓绮,刘春铖,刘晓晗,赵然,刘玉昆. 结直肠癌中SP1的瘤内异质性表达及其临床意义[J]. 山东大学学报 (医学版), 2024, 62(5): 89-94.
[9] 吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报 (医学版), 2024, 62(5): 54-63.
[10] 刘春铖,刘晓晗,魏闫若雪,李梓绮,刘玉昆,赵然. 结直肠癌中含溴结构域蛋白9的亚细胞定位模式及其临床意义[J]. 山东大学学报 (医学版), 2024, 62(4): 24-30.
[11] 吴飞,李清丽,肖振卫. 孟德尔随机化探究细胞因子与慢性肾脏病的因果关系[J]. 山东大学学报 (医学版), 2024, 62(11): 85-95.
[12] 于丽,王弋嘉,杨勇,刘学焕,万雪花,包翠萍,苗蓓亮,李斯琪,李静,刘筠. 基于光学表面波技术探究具核梭杆菌介导的自噬与细胞折射率的关系[J]. 山东大学学报 (医学版), 2024, 62(10): 87-97.
[13] 董雅琪,王新慧,赵颖慧,王传新. 血清外泌体LINC02163作为结直肠癌远处转移标志物的临床价值[J]. 山东大学学报 (医学版), 2023, 61(9): 19-28.
[14] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[15] 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107.
Viewed
Full text
25
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 25

  From local
  Times 25
  Rate 100%

Abstract
64
Just accepted Online first Issue
0 0 64
  From Others local
  Times 62 2
  Rate 97% 3%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!