您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (7): 62-71.doi: 10.6040/j.issn.1671-7554.0.2024.0245

• 基础医学 • 上一篇    下一篇

血管内皮生长因子-B对形觉剥夺性近视豚鼠视网膜中多巴胺水平的影响

姜俊,高洪莲,孙瑞婷,孙昕,彭庆生,张守宽,张磊   

  1. 滨州医学院附属医院眼科, 山东 滨州 256600
  • 发布日期:2024-09-20
  • 通讯作者: 张磊. E-mail: zhangleisd@263.net

Effect of vascular endothelial growth factor-B on the dopamine level in the retina of guinea pigs with form-deprivation myopia

JIANG Jun, GAO Honglian, SUN Ruiting, SUN Xin, PENG Qingsheng, ZHANG Shoukuan, ZHANG Lei   

  1. Ophthalmology Department, Affiliated Hospital of Binzhou Medical University, Binzhou 256600, Shandong, China
  • Published:2024-09-20

摘要: 目的 研究玻璃体腔注射血管内皮生长因子-B(vascular endothelial growth factor-B, VEGF-B)对形觉剥夺性近视(form-deprivation myopia, FDM)豚鼠视网膜中多巴胺(dopamine, DA)水平的影响。 方法 随机选取健康的3周龄豚鼠147只,雌雄不限,随机分为7个组,每组21只。空白组双眼不予干预,其余6组使用半透明乳胶气球套头遮盖豚鼠右眼14 d建立FDM模型。造模前对PBS组、0.25 ng组、2.5 ng组、25 ng组、50 ng组右眼玻璃体腔注射PBS缓冲液2.5 μL、VEGF-B 0.25 ng、2.5 ng、25 ng、50 ng。遮盖前后分别测量造模眼屈光度与眼轴长度,14 d后采用免疫荧光法检测酪氨酸羟化酶(tyrosine hydroxylase, TH)阳性细胞数量、免疫印记法检测视网膜TH的蛋白表达情况、HE染色观察视网膜血管内皮细胞核数、高效液相色谱法测定DA与3,4-二羟基苯乙酸(3,4-dihydroxyphenylacetic acid, DOPAC)的含量及 DA 代谢率。 结果 造模前,7组豚鼠右眼屈光度与眼轴长度均无显著差异(P>0.05)。造模完成后与空白组相比,FDM组、PBS组屈光不正向近视侧偏移,眼轴增长,TH、DA、DOPAC含量均降低(P<0.05);与FDM组相比,0.25 ng组、2.5 ng组、25 ng组、50 ng组豚鼠遮盖眼近视程度均降低,眼轴增长趋势被抑制,TH、DA、DOPAC表达量均增加(P均<0.05),随着VEGF-B浓度的升高,眼轴增长所受抑制程度逐渐增加,近视程度逐渐减轻,TH等检测指标的表达水平均逐渐升高。7组豚鼠视网膜DA代谢率、视网膜内血管内皮细胞核数差异均无统计学意义(P>0.05)。 结论 玻璃体腔注射VEGF-B可使FDM豚鼠视网膜中的DA含量升高、眼轴增长程度减轻,从而抑制FDM豚鼠的近视发展,且不会诱导新生血管生成,其中50 ng组VEGF-B对DA的促进作用更明显。

关键词: 血管内皮生长因子-B, 形觉剥夺性近视, 多巴胺, 视网膜, 酪氨酸羟化酶

Abstract: Objective To study the effect of intravitreal injection of vascular endothelial growth factor-B(VEGF-B)on the level of dopamine(DA)in the retina of form-deprivation myopia(FDM)guinea pigs. Methods A Total of 147 healthy 3-week-old guinea pigs, male or female, were selected and randomly divided into 7 groups, with 21 guinea pigs in each group. The eyes of guinea pins in the blank group were not intervened,and the right eyes of the guinea pins in other 6 groups were covered with translucent latex balloon for 14 days to establish the FDM model. After preparation, 2.5 μL of PBS buffer and VEGF-B at concentrations of 0.25 ng, 2.5 ng, 5 ng and 50 ng were intravitreally injected into the right eye of the guinee pigs in the PBS group as well as the groups of 0.25 ng, 2.5 ng, 25 ng and 50 ng. Ocular refraction and axial length were recorded in both eyes of each animal before and after modeling. After 14 days, immunofluorescence was used to detect the number of tyrosine hydroxylase positive cells; Western blotting was used to detect the expression of TH protein in the retina; HE staining was used to observe the number of retinal vascular endothelial cell nuclei; and high performance liquid chromatography was used to determine DA and 3,4-dihydroxyphenylacetic acid(DOPAC)content and DA metabolic rate. Results Before modeling,there was no significant difference in the diopter and axial length of the right eye among the 7 groups(P>0.05). After modeling, compared with the blank group, refractive error was shifted to the myopic side in the FDM and PBS groups, the axes of the eyes grew, and the TH, DA, and DOPAC levels were reduced(P<0.05). Compared to the FDM group, the guinea pigs in the VEGF-B groups(0.25 ng, 2.5 ng, 25 ng and 50 ng)exhibited a decrease in myopia progression and inhibition of axial elongation, accompanied by increased expression levels of TH, DA, and DOPAC(all P<0.05). As the concentration of VEGF-B increased, there was a gradual enhancement in the suppression of axial growth and reduction in myopia severity while observing a progressive elevation in TH expression and other indicators. There was no significant difference in the metabolic rate of DA and the number of retinal vascular endothelial cell nuclei among the 7 groups(P>0.05). Conclusion The intravitreal injection of VEGF-B can enhance retinal DA levels and inhibit axial elongation, thereby effectively suppressing myopia development in FDM guinea pigs without inducing neovascularization. Notably, the impact of VEGF-B on DA was particularly pronounced in the 50 ng group.

Key words: Vascular endothelial growth factor-B, Form deprivation myopia, Dopamine, Retina, Tyrosine hydroxylase

中图分类号: 

  • R774.1
[1] Harb EN, Wildsoet CF. Origins of refractive errors: environmental and genetic factors[J]. Annu Rev Vis Sci, 2019, 5: 47-72. doi:10.1146/annurev-vision-091718-015027.
[2] Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010[J]. Br J Ophthalmol, 2012, 96(5): 614-618.
[3] Foreman J, Salim AT, Praveen A, et al. Association between digital smart device use and myopia: a systematic review and meta-analysis[J]. Lancet Digit Health, 2021, 3(12): e806-e818.
[4] Han XT, Liu C, Chen YX, et al. Myopia prediction: a systematic review[J]. Eye, 2022, 36(5): 921-929.
[5] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
[6] Zhou XT, Pardue MT, Iuvone PM, et al. Dopamine signaling and myopia development: what are the key challenges[J]. Prog Retin Eye Res, 2017, 61: 60-71. doi:10.1016/j.preteyeres.2017.06.003.
[7] Landis EG, Park HN, Chrenek M, et al. Ambient light regulates retinal dopamine signaling and myopia susceptibility[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 28.
[8] 雍海溟, 宋强, 张水华, 等. 血管内皮生长因子-B在弱视大鼠眼优势柱可塑性中的神经保护作用[J]. 宁夏医学杂志, 2021, 43(12): 1057-1061, 1225. YONG Haiming, SONG Qiang, ZHANG Shuihua, et al. The neuroprotective effect of vascular endothelial growth factor-B on the plasticity of dominant column in amblyopic rats[J]. Ningxia Medical Journal, 2021, 43(12): 1057-1061, 1225.
[9] Caballero B, Sherman SJ, Falk T. Insights into the mechanisms involved in protective effects of VEGF-B in dopaminergic neurons[J]. Parkinsons Dis, 2017: 4263795. doi:10.1155/2017/4263795.
[10] Yasuhara T, Shingo T, Muraoka K, et al. Neurorescue effects of VEGF on a rat model of Parkinsons disease[J]. Brain Res, 2005, 1053(1/2): 10-18.
[11] Tian YY, Tang CJ, Wang JN, et al. Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors[J]. Neurosci Lett, 2007, 421(3): 239-244.
[12] Yasuhara T, Shingo T, Muraoka K, et al. The differences between high and low-dose administration of VEGF to dopaminergic neurons of in vitro and in vivo Parkinson’s disease model[J]. Brain Res, 2005, 1038(1): 1-10.
[13] 彭越, 高宇, 王云飞, 等. VEGF在糖尿病视网膜病变发病机制中的作用[J]. 医学信息, 2021, 34(5): 36-39. PENG Yue, GAO Yu, WANG Yunfei, et al. The role of VEGF in the pathogenesis of diabetic retinopathy[J]. Journal of Medical Information, 2021, 34(5): 36-39.
[14] 孙俊, 余欢, 黄守约. 血管内皮生长因子对青光眼的视神经保护机制的研究进展[J]. 诊断学理论与实践, 2021, 20(3): 290-293. SUN Jun, YU Huan, HUANG Shouyue. Advances in study on mechanism of protective effect of vascular endothelial growth factor on optic nerve in glaucoma[J]. Journal of Diagnostics Concepts & Practice, 2021, 20(3): 290-293.
[15] 赖诚, 李明新. 血管内皮生长因子-B对高糖环境下人视网膜色素上皮细胞凋亡的保护作用[J]. 眼科新进展, 2020, 40(5): 430-434. LAI Cheng, LI Mingxin. Protective effect of vascular endothelial growth factor-B on apoptosis of cultured human retinal pigment epithelial cells-19 in high glucose environment[J]. Recent Advances in Ophthalmology, 2020, 40(5): 430-434.
[16] 孙瑞婷, 高洪莲, 张凤一, 等. 血管内皮生长因子-A165对形觉剥夺性近视豚鼠视网膜中多巴胺水平的影响[J]. 眼科新进展, 2023, 43(10): 775-780. SUN Ruiting, GAO Honglian, ZHANG Fengyi, et al. Effects of vascular endothelial growth factor-A165 on the dopamine level in the retina of guinea pigs with form-deprivation myopia[J]. Recent Advances in Ophthalmology, 2023, 43(10): 775-780.
[17] 邱宇, 高洪莲, 于睿, 等. 抗血管内皮生长因子玻璃体内注射对形觉剥夺性近视豚鼠视网膜中多巴胺水平的影响[J]. 眼科新进展, 2022, 42(2): 113-117. QIU Yu, GAO Honglian, YU Rui, et al. Effect of intravitreal injection of anti-vascular endothelial growth factor on the dopamine level in the retina of guinea pigs with form deprivation myopia[J]. Recent Advances in Ophthalmology, 2022, 42(2): 113-117.
[18] Lee C, Chen RY, Sun GL, et al. VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway[J]. Signal Transduct Target Ther, 2023, 8(1): 305.
[19] 周桂梅, 兰长骏, 廖萱. 实验性近视豚鼠模型研究进展[J]. 国际眼科杂志, 2023, 23(3): 430-434. ZHOU Guimei, LAN Changjun, LIAO Xuan. Advances in experimental myopic guinea pig models[J]. International Eye Science, 2023, 23(3): 430-434.
[20] 黄颖, 邸悦, 乔彤. 豚鼠与人眼球结构及生物学参数的比较研究进展[J]. 中国眼耳鼻喉科杂志, 2023, 23(2): 180-184. HUANG Ying, DI Yue, QIAO Tong. Comparison of eyeball structure and biological parameters between guinea pig and humans[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2023, 23(2): 180-184.
[21] Falk T, Zhang SL, Sherman SJ. Vascular endothelial growth factor B(VEGF-B)is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson’s disease[J]. Mol Neurodegener, 2009, 4: 49. doi:10.1186/1750-1326-4-49.
[22] Medina A. The cause of myopia development and progression: theory, evidence, and treatment[J]. Surv Ophthalmol, 2022, 67(2): 488-509.
[23] Hashemi H, Fotouhi A, Yekta A, et al. Global and regional estimates of prevalence of refractive errors: systematic review and meta-analysis[J]. J Curr Ophthalmol, 2018, 30(1): 3-22.
[24] de Jong PTVM. Myopia: its historical contexts[J]. Br J Ophthalmol, 2018, 102(8): 1021-1027.
[25] 张凤一, 高洪莲, 邱宇, 等. 多巴胺对氧诱导视网膜病变小鼠视网膜新生血管的影响[J]. 眼科新进展, 2023, 43(1): 25-29. ZHANG Fengyi, GAO Honglian, QIU Yu, et al. Effect of dopamine on retinal neovascularization in oxygen-induced retinopathy mice[J]. Recent Advances in Ophthalmology, 2023, 43(1): 25-29.
[26] Chen P, Xu LJ, Zhang J, et al. Up-regulation of SorCS1, an important sorting receptor, in the retina of a form-deprivation rat model[J]. Cell Mol Neurobiol, 2020, 40(3): 395-405.
[27] Thomson K, Karouta C, Ashby R. Form-deprivation and lens-induced myopia are similarly affected by pharmacological manipulation of the dopaminergic system in chicks[J]. Invest Ophthalmol Vis Sci, 2020, 61(12): 4.
[28] Medina A, Greene PR. Progressive myopia and lid suture myopia are explained by the same feedback process: a mathematical model of myopia[J]. J Nat Sci, 2015, 1(6): e121.
[29] Wang M, Schaeffel F, Jiang B, et al. Effects of light of different spectral composition on refractive development and retinal dopamine in chicks[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4413-4424.
[30] 王新钰, 高丽芬, 路晖, 等. 帕金森疾病的相关视网膜表现[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 156-162. WANG Xinyu, GAO Lifen, LU Hui, et al. Related retinal manifestations in Parkinsons disease[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 156-162.
[31] Sakshi, Swain BC, Das AK, et al. Z-scan analysis and theoretical studies of dopamine under physiological conditions[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022, 271: 120890. doi:10.1016/j.saa.2022.120890.
[32] 王晗, 李书鹏, 姜玉华, 等. 谷胱甘肽对多巴胺诱导的GH4细胞凋亡的保护作用[J]. 山东大学学报(医学版), 2011, 49(11): 48-52, 73. WANG Han, LI Shupeng, JIANG Yuhua, et al. Glutathione protects GH4 pituitary lactotrope tumor cells from apoptosis induced by dopamine[J]. Journal of Shandong University(Health Sciences), 2011, 49(11): 48-52, 73.
[33] Chakroborty D, Sarkar C, Yu HM, et al. Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells[J]. Proc Natl Acad Sci U S A, 2011, 108(51): 20730-20735.
[34] Sarkar C, Ganju RK, Pompili VJ, et al. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis[J]. Angiogenesis, 2017, 20(1): 97-107.
[35] Gao QY, Liu Q, Ma P, et al. Effects of direct intravitreal dopamine injections on the development of lid-suture induced myopia in rabbits[J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2006, 244(10): 1329-1335.
[36] Stone RA, Lin T, Laties AM, et al. Retinal dopamine and form-deprivation myopia[J]. Proc Natl Acad Sci U S A, 1989, 86(2): 704-706.
[37] Iuvone PM, Tigges M, Fernandes A, et al. Dopamine synthesis and metabolism in rhesus monkey retina: development, aging, and the effects of monocular visual deprivation[J]. Vis Neurosci, 1989, 2(5): 465-471.
[38] Falk T, Gonzalez RT, Sherman SJ. The Yin and Yang of VEGF and PEDF: multifaceted neurotrophic factors and their potential in the treatment of Parkinsons Disease[J]. Int J Mol Sci, 2010, 11(8): 2875-2900.
[39] Yue X, Hariri DJ, Caballero B, et al. Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinsons disease[J]. Neuroscience, 2014, 258: 385-400. doi: 10.1016/j.neuroscience.2013.11.038.
[40] Sun RT, Peng QS, Zhang FY, et al. Effect of vascular endothelial growth factor 165 on dopamine level in the retinas of guinea pigs with form-deprivation myopia[J]. PeerJ, 2023, 11: e16255. doi:10.7717/peerj.16255.
[41] Uemura A, Fruttiger M, DAmore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation[J]. Prog Retin Eye Res, 2021, 84: 100954. doi:10.1016/j.preteyeres.2021.100954.
[42] Zajkowska M, Lubowicka E, Malinowski P, et al. Plasma levels of VEGF-A, VEGF B, and VEGFR-1 and applicability of these parameters as tumor markers in diagnosis of breast cancer[J]. Acta Biochim Pol, 2018, 65(4): 621-628.
[43] Sauer L, Chandler M, Hartnett ME. Extending peripheral retinal vascularization in retinopathy of prematurity through regulation of VEGF signaling[J]. Am J Ophthalmol, 2024, 260: 190-199. doi:10.1016/j.ajo.2023.12.008.
[1] 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62.
[2] 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44.
[3] 崔锡铭,王霜,许顺江,张睿,谢冰,崔冬生,赵占胜. 白藜芦醇对高糖环境下人视网膜血管内皮细胞增殖的影响及分子机制[J]. 山东大学学报 (医学版), 2019, 57(3): 19-24.
[4] 勾云, 周波, 魏操,陈运华, 徐利,刘芬, 张春林, 文敏. 硫辛酸对帕金森病大鼠黑质线粒体的保护作用[J]. 山东大学学报(医学版), 2017, 55(8): 18-23.
[5] 王平,陈静,史庆,傅艺冰. RbAp48在子宫内膜腺癌中的表达及临床意义[J]. 山东大学学报(医学版), 2016, 54(5): 84-87.
[6] 郝风芹,李娜. 洋葱总黄酮对大鼠糖尿病视网膜神经节细胞的神经保护作用[J]. 山东大学学报(医学版), 2016, 54(1): 7-10.
[7] 刘雪莲, 白宁艳, 牟洁, 李治清, 吕鹏, 杨豪, 韦松, 颜学梅. 最小手术量治疗孔源性视网膜脱离的临床体会[J]. 山东大学学报(医学版), 2014, 52(S2): 34-35.
[8] 曹国凡, 薛劲松, 姚进, 蒋沁. 青光眼患者视网膜神经纤维层厚度与对应视野缺损的相关性研究[J]. 山东大学学报(医学版), 2014, 52(S1): 68-70.
[9] 仝佳1,张正军2,孙新海3,耿厚法2,孙琳2. 糖尿病视网膜病变对2型糖尿病患者脑损伤的预测价值[J]. 山东大学学报(医学版), 2014, 52(6): 46-50.
[10] 岳庆伟,朱德晓,吴金涛,刘海莉,张静,李贵宝,丁兆习,孙晋浩. 甲基苯丙胺对中脑边缘投射多巴胺神经元自发动作电位频率和Ih电流的影响[J]. 山东大学学报(医学版), 2014, 52(5): 10-14.
[11] 孟祥继,庞琦,丁锋,辛涛,杨洪安. 纹状体立体定向注射Taclo建立帕金森病大鼠模型[J]. 山东大学学报(医学版), 2014, 52(3): 16-18.
[12] 刘娜,蔡可丽. Ang (1-7)及培哚普利对糖尿病视网膜TGF-β1表达的影响[J]. 山东大学学报(医学版), 2013, 51(5): 62-65.
[13] 曹爱华1,马良2,于琳3,杨秉上1,张昕婷1,雷革非1,王纪文1. ABT-724对自发性高血压大鼠注意定势转移能力的影响[J]. 山东大学学报(医学版), 2013, 51(12): 15-19.
[14] 栗映梅1,2,吴欣怡1,王玉2,范传峰2,盛艳娟2,舒相汶2,陈璇2,吴昌龙2 . 宁阳县城乡居民高血压患者视网膜病变现况分析[J]. 山东大学学报(医学版), 2013, 51(1): 98-102.
[15] 董海曼1,高青1,张静1,暴丽华1,李贵宝1,彭雷1,冯晓雯1, 岳庆伟1,刘增训2,孙晋浩1,高英茂1. 中脑皮层投射多巴胺神经元的提取及帕潘立酮对其电生理学特性的影响[J]. 山东大学学报(医学版), 2012, 50(7): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨艳娜,陈方方,李洧,王艳,王星光,姜淑娟 . RSV感染哮喘小鼠气道炎症及重构与激素抵抗性的研究[J]. 山东大学学报(医学版), 2008, 46(4): 335 -339 .
[2] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[3] 孟朝暾,李钦, 孙卉,邬信芳,孙文凯,高伟. 白细胞介素18单核苷酸多态性与73例喉鳞状细胞癌易感性的关联性[J]. 山东大学学报 (医学版), 2020, 1(9): 58 -63 .
[4] 满 晓,冷振璞,庞在英,杜怡峰. CT灌注成像结合血浆谷氨酸、γ-氨基丁酸检测对诊断急性脑梗死的价值[J]. 山东大学学报(医学版), 2008, 46(8): 784 -786 .
[5] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42 -49, 73 .
[6] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[7] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 韩芳,黎莉. 靶向survivin反义寡核苷酸对MCF-7乳腺癌细胞系survivin mRNA及紫杉醇药物敏感性的影响[J]. 山东大学学报(医学版), 2008, 46(1): 36 -39 .