您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (12): 70-77.doi: 10.6040/j.issn.1671-7554.0.2023.0748

• 医学影像人工智能的创新与挑战—临床研究 • 上一篇    

CT影像组学对囊腔型肺癌的诊断价值

艾江山1,高会江1,艾仕文2,李恒艳3,石国栋1,魏煜程1   

  1. 1.青岛大学附属医院胸外科, 山东 青岛 266003;2.济宁医学院附属医院胸外科, 山东 济宁 272007;3.济宁医学院附属医院影像科, 山东 济宁 272007
  • 发布日期:2024-01-11
  • 通讯作者: 魏煜程. E-mail:weiyuchengchengst@163.com

Diagnostic value of CT radiomics in lung cancer associated with cystic airspaces

AI Jiangshan1, GAO Huijiang1, AI Shiwen2, LI Hengyan3, SHI Guodong1, WEI Yucheng1   

  1. 1. Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China;
    2. Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining 272007, Shandong, China;
    3. Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272007, Shandong, China
  • Published:2024-01-11

摘要: 目的 建立一个基于临床特征和术前计算机断层扫描(CT)影像组学的预测模型辅助诊断囊腔型肺癌。 方法 回顾性分析2020年1月至2021年12月在青岛大学附属医院及济宁医学院附属医院接受手术治疗的患者,纳入病变中含有囊腔的患者296例,并分为囊腔型肺癌和良性病变两组。从术前CT图像上提取病灶的影像组学特征,并综合分析临床病理特征。将上述特征进行筛选后以随机森林算法构建诊断模型,其中来自青岛大学附属医院的214例患者进行训练和内部验证(D1)。其余82例来自济宁医学院附属医院的患者作为独立的外部验证队列(D2)。通过受试者工作特征曲线(ROC)、校准曲线及决策曲线分析(DCA)对模型的分类能力进行评估。 结果 囊腔型肺癌组患者年龄高于良性病变组(60.12±9.95 vs 50.86 ±13.66, P<0.001),其余临床特征差异无统计学意义。影像组学特征经筛选后获得形状平坦度、稳健平均绝对偏差、差异方差等5种影像组学纹理特征。临床与影像组学特征融合后构建随机森林模型在D1(AUC 0.97)和D2(AUC 0.74)上均显示出较好的诊断效能,在D1中的准确性、敏感性与特异性分别为0.92、0.85和0.99。 结论 构建并外部验证了一个实用的诊断模型,可以比较准确地区分囊腔型肺癌和囊腔样良性病变。这种创新的方法可作为囊腔型肺癌的一种新的无创诊断工具。

关键词: 囊腔型肺癌, 影像组学, 外部验证, 计算机断层扫描

Abstract: Objective To develop a prediction model based on clinical features and preoperative computed tomography(CT), which would serve as a non-invasive method for diagnosing lung cancers associated with cystic airspaces(LCCA). Methods Clinical data of patients undergoing surgery during Jan. 2020 and Dec. 2021 were retrospectively reviewed. A total of 296 patients were enrolled and divided into LCCA group and benign group. Radiomics features were extracted from lesions on preoperative CT images, and clinicopathological characteristics were carefully analyzed. The aforementioned features were used to construct a diagnostic model with random forest algorithm following feature reduction. The 214 patients from the Affiliated Hospital of Qingdao University underwent training and internal verification(D1). The remaining 82 patients from the Affiliated Hospital of Jining Medical College served as an independent external validation cohort(D2). The classification ability of the model was evaluated with receiver operating characteristic(ROC)curve, calibration curve and decision curve analysis(DCA). Results There were no other significant differences between the two groups in clinical features except that the LCCA group averaged older than the benign group(60.12±9.95 vs. 50.86±13.66, P<0.001). After radiomic features were screened, the following features were obtained, including shape flatness, robust mean absolute deviation and difference variance. The model demonstrated superior performance in discriminating LCCA in both D1(AUC 0.97)and D2(AUC 0.74), with accuracy, sensitivity and specificity on D1 being 0.92, 0.85 and 0.99, respectively. Conclusion We have developed and externally validated a practical model that can accurately differentiate LCCA from benign lesions. This innovative approach may serve as a new non-invasive diagnostic tool for LCCA.

Key words: Lung cancer associated with cystic airspaces, Radiomics, External validation, Computed tomography

中图分类号: 

  • R734.2
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Detterbeck FC, Kumbasar U, Li AX, et al. Lung cancer with air lucency: a systematic review and clinical management guide [J]. J Thorac Dis, 2023, 15(2): 731-746.
[3] Mascalchi M, Attina D, Bertelli E, et al. Lung cancer associated with cystic airspaces [J]. J Comput Assist Tomogr, 2015, 39(1): 102-108.
[4] Fintelmann FJ, Brinkmann JK, Jeck WR, et al. Lung cancers associated with cystic airspaces: natural history, pathologic correlation, and mutational analysis [J]. J Thorac Imaging, 2017, 32(3): 176-188.
[5] Shen Y, Xu X, Zhang Y, et al. Lung cancers associated with cystic airspaces: CT features and pathologic correlation[J]. Lung Cancer, 2019, 135: 110-115. doi: 10.1016/j.lungcan.2019.05.012.
[6] ?瘙塁ahin C, Yılmaz O, Üçpınar BA, et al. Computed tomography-guided transthoracic core needle biopsy of lung masses: technique, complications and diagnostic yield rate [J]. Sisli Etfal Hastanesi tip bulteni, 2020, 54(1): 47-51.
[7] Huang EP, OConnor JPB, McShane LM, et al. Criteria for the translation of radiomics into clinically useful tests [J]. Nat Rev Clin Oncol, 2023, 20(2): 69-82.
[8] Yu M, Wang Z, Yang G, et al. A model of malignant risk prediction for solitary pulmonary nodules on(18)F-FDG PET/CT: building and estimating [J]. Thorac Cancer, 2020, 11(5): 1211-1215.
[9] Lv Y, Ye J, Yin YL, et al. A comparative study for the evaluation of CT-based conventional, radiomic, combined conventional and radiomic, and delta-radiomic features, and the prediction of the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules [J]. Clin Radiol, 2022, 77(10): e741-e748.
[10] Zhang N, Liu JF, Wang YN, et al. A nomogram to predict invasiveness in lung adenocarcinoma presenting as ground glass nodule [J]. Transl Cancer Res, 2020, 9(3): 1660-1669.
[11] 肖寿勇, 吴四云, 赵炜杰, 等. 浸润性肺腺癌高分辨率CT征象与病理亚型的对照研究[J]. 临床放射学杂志, 2022, 41(1): 75-80. XIAO Shouyong, WU Siyun, ZHAO Weijie, et al. A comparative study of high-resolution CT signs and pathological subtypes of invasive lung adenocarcinoma [J]. Journal of Clinical Radiology, 2022, 41(1): 75-80.
[12] van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype [J]. Cancer Res, 2017, 77(21): e104-e107.
[13] Wu G, Woodruff HC, Shen J, et al. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study [J]. Radiology, 2020, 297(2): 451-458.
[14] 高琳, 于鑫鑫, 康冰, 等. CT影像组学对肺纯磨玻璃结节浸润性的预测价值[J]. 山东大学学报(医学版), 2022, 60(5): 87-97. GAO Lin, YU Xinxin, KANG Bing, et al. Predictive value of CT-based radiomics nomogram for the invasiveness of lung pure ground-glass nodules [J]. Journal of Shandong University(Health Sciences), 2022, 60(5): 87-97.
[15] Wang T, She Y, Yang Y, et al. Radiomics for survival risk stratification of clinical and pathologic stage IA pure-solid non-small cell lung cancer [J]. Radiology, 2022, 302(2): 425-434.
[16] Coroller TP, Agrawal V, Huynh E, et al. Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC [J]. J Thorac Oncol, 2017, 12(3): 467-476.
[17] Farooqi AO, Cham M, Zhang L, et al. Lung cancer associated with cystic airspaces [J]. AJR Am J Roentgenol, 2012, 199(4): 781-786.
[18] Zhu H, Zhang L, Huang Z, et al. Lung adenocarcinoma associated with cystic airspaces: predictive value of CT features in assessing pathologic invasiveness [J]. Eur J Radiol, 2023, 165: 110947. doi: 10.1016/j.ejrad.2023.110947.
[19] Wang B, Hamal P, Sun K, et al. Clinical value and pathologic basis of cystic airspace within subsolid nodules confirmed as lung adenocarcinomas by surgery [J]. Clin Lung Cancer, 2021, 22(6): e881-e888.
[20] Byrne D, English JC, Atkar-Khattra S, et al. Cystic primary lung cancer: evolution of computed tomography imaging morphology over time [J]. J Thorac Imaging, 2021, 36(6): 373-381.
[21] 杨亚茹, 何慧, 薛松, 等. 囊腔型肺癌的CT特征动态变化及病理对照分析[J] , 中国医学影像学杂志, 2021, 29(7): 682-686. YANG Yaru, HE Hui, XUE Song, et al. CT serial findings and pathological features of cystic lung cancer: a comparative study [J]. Chinese Journal of Medical Imaging, 2021, 29(7): 682-686.
[22] Shen Y, Zhang Y, Guo Y, et al. Prognosis of lung cancer associated with cystic airspaces: a propensity score matching analysis [J]. Lung Cancer, 2021, 159: 111-116. doi: 10.1016/j.lungcan.2021.07.003.
[23] Ma Z, Wang S, Zhu H, et al. Comprehensive investigation of lung cancer associated with cystic airspaces: predictive value of morphology [J]. Eur J Cardiothorac Surg, 2022, 62(5): ezac297. doi: 10.1093/ejcts/ezac297.
[24] Avanzo M, Wei L, Stancanello J, et al. Machine and deep learning methods for radiomics [J]. Med Phys, 2020, 47(5): e185-e202.
[25] 李嘉威, 李夏东, 陈雪琴, 等. CT影像组学在肺癌诊治中应用的研究进展和问题探索[J] , 中国肺癌杂志, 2020, 23(10): 904-908. LI Jiawei, LI Xiadong, CHEN Xueqin, et al. Research advances and obstacles of CT-based radiomics in diagnosis and treatment of lung cancer [J]. Chinese Journal of Lung Cancer, 2020, 23(10): 904-908.
[1] 靳新娟,左立平,邓展昊,李安宁,于德新. MRI影像组学对135例肝癌耐药蛋白PFKFB3的预测价值[J]. 山东大学学报 (医学版), 2023, 61(6): 79-86.
[2] 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67.
[3] 朱正阳,沈靖菲,陈思璇,叶梅萍,杨惠泉,周佳南,梁雪,张鑫,张冰. 磁敏感加权成像不同影像组学模型预测胶质瘤IDH基因突变[J]. 山东大学学报 (医学版), 2023, 61(12): 44-50.
[4] 焦光丽,石子馨,陈蓉,宋亚博,杨飞,崔书君. 基于增强CT影像组学预测卵巢癌患者铂类药物敏感性[J]. 山东大学学报 (医学版), 2023, 61(12): 62-69.
[5] 高琳,于鑫鑫,康冰,张帅,王锡明. CT影像组学对肺纯磨玻璃结节浸润性的预测价值[J]. 山东大学学报 (医学版), 2022, 60(5): 87-97.
[6] 袁宏涛,纪淙山,康冰,秦松楠,于鑫鑫,高琳,王锡明. CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(4): 68-75.
[7] 王颖,顾慧,于鑫鑫,胡锦卓,王箬芃,王锡明. 71例腹主动脉瘤的基线CT特征与病变进展的相关性[J]. 山东大学学报 (医学版), 2022, 60(10): 62-67.
[8] 张嘉豪,刘东旭. 70例不同垂直骨面型骨性Ⅱ类错牙合磨牙及基骨横向特征[J]. 山东大学学报 (医学版), 2021, 59(2): 76-82.
[9] 宋珍珍,孙小玲,李海鸥,王芳,张冉,于德新. 120例胶质瘤及瘤周水肿MRI影像组学在评估肿瘤复发中的价值[J]. 山东大学学报 (医学版), 2021, 59(11): 53-60.
[10] 齐萌,黄燕,吴珊珊,刘波,张思伟. 单能量去金属伪影算法重建效果的系统评价及Meta分析[J]. 山东大学学报 (医学版), 2018, 56(9): 59-64.
[11] 狄钰,阎磊,杨飞龙,李大伟,徐忠华. 髓质海绵肾结石的计算机断层扫描、静脉肾盂造影表现[J]. 山东大学学报 (医学版), 2018, 56(3): 60-65.
[12] 王维军,周宁全,王超. CT定位微创徒手穿刺软通道技术治疗中等量高血压脑出血68例[J]. 山东大学学报(医学版), 2017, 55(5): 61-65.
[13] 戴建建,袁冰,张颖,林琦,袁苑,韩明勇. CT引导下125I粒子植入治疗Ⅲ期非小细胞肺癌疗效与并发症的临床观察[J]. 山东大学学报(医学版), 2017, 55(2): 32-37.
[14] 孟祥水,柴相君,马祥兴,任庆国,杨志成. CT、MRI对喉癌治疗方案选择的价值[J]. 山东大学学报(医学版), 2016, 54(10): 76-79.
[15] 刘青, 商蒙蒙, 孙霄, 李杰, 杨杰, 时丹丹, 宁松. 泌尿系结石化学成分对超声声影强弱的影响[J]. 山东大学学报(医学版), 2015, 53(9): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!