山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (7): 1-11.doi: 10.6040/j.issn.1671-7554.0.2023.0132
• 基础医学 •
金珊,高杰,谢玉姣,展垚,杜甜甜,王传新
JIN Shan, GAO Jie, XIE Yujiao, ZHAN Yao, DU Tiantian, WANG Chuanxin
摘要: 目的 探讨蛋白精氨酸甲基转移酶5(PRMT5)通过甲基化作用,修饰并上调泛素特异性蛋白酶15(USP15)的蛋白水平,从而促进乳腺癌发生发展的作用。 方法 采用基因表达谱交互分析(GEPIA2)在线数据库和Kaplan-Meier Plotter生存曲线分析,分析PRMT5在肿瘤组织和正常组织中的表达差异,及其与乳腺癌患者临床预后的关系。采用免疫亲和纯化及银染联合质谱分析得到与PRMT5结合的蛋白。通过慢病毒稳转技术在MCF-7细胞中过表达或敲低PRMT5,实时荧光定量PCR(qRT-PCR)及蛋白免疫印迹(Western blotting)技术检测细胞内相关蛋白的表达。质粒或小干扰RNA(siRNA)转染技术敲低或过表达USP15, qRT-PCR及Western blotting技术检测细胞内相关蛋白表达,采用细胞活性实验(CCK8)、克隆形成和Transwell实验检测其对乳腺癌细胞增殖与侵袭能力的影响。利用EPZ015666(GSK3235025)小分子抑制剂抑制PRMT5甲基转移酶活性后,采用Western blotting技术检测细胞内相关蛋白的变化,采用CCK8和Transwell实验检测其对乳腺癌细胞增殖和侵袭能力的影响。 结果 生物信息学分析结果显示,PRMT5在乳腺癌患者中高表达并与乳腺癌患者不良预后相关。免疫亲和纯化及银染联合质谱分析并通过免疫共沉淀(Co-IP)实验验证,发现PRMT5与USP15存在相互结合。在乳腺癌细胞MCF-7中,过表达FLAG-PRMT5后,通过Western blotting和qRT-PCR实验检测,发现USP15的蛋白水平明显增加,而不影响USP15的mRNA水平;敲低PRMT5表达后,USP15的蛋白水平降低,而mRNA水平未发生改变。在MCF-7细胞中,过表达Myc-USP15明显降低FBXW7的mRNA及蛋白水平,细胞功能实验结果显示,细胞的增殖和侵袭能力增加,敲低USP15则结果相反。Western blotting和细胞功能实验结果显示,EPZ015666抑制PRMT5的甲基转移酶活性后,可通过降低USP15的蛋白水平降低细胞的增殖和侵袭能力。 结论 乳腺癌细胞中PRMT5与USP15相互结合,并以甲基转移酶活性依赖的方式上调USP15的蛋白水平。USP15的升高可通过催化组蛋白H2BK120ub的去泛素化修饰,使FBXW7基因转录激活被抑制,进而促进乳腺癌细胞增殖和上皮-间质转化过程等,促进乳腺癌的发生与进展,PRMT5是乳腺癌潜在的诊断及干预治疗靶点。
中图分类号:
[1] Giaquinto AN, Sung H, Miller KD, et al. Breast Cancer Statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(6): 524-541. [2] Islami F, Goding SA, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States [J]. CA Cancer J Clin, 2018, 68(1): 31-54. [3] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33. [4] Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers [J]. J Cell Physiol, 2018, 233(7): 5200-5213. [5] Li G, Hu J, Hu G. Biomarker studies in early detection and prognosis of breast cancer [J]. Adv Exp Med Biol, 2017, 1026: 27-39. doi: 10.1007/978-981-10-6020-5_2. [6] 孔雪, 李娟, 段伟丽, 等. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报(医学版), 2021, 59(4): 70-78. KONG Xue, LI Juan, DUAN Weili, et al. Effects of lncRNA AC012073.1 on the migration and invasion of human breast cancer cells and its clinical significance [J]. Journal of Shandong University(Health Sciences), 2021, 59(4): 70-78. [7] Wu Y, Wang Z, Han L, et al. PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer [J]. Mol Ther, 2022, 30(7): 2603-2617. [8] Zhang J, Fan X, Zhou Y, et al. The PRMT5-LSD1 axis confers Slug dual transcriptional activities and promotes breast cancer progression [J]. J Exp Clin Cancer Res, 2022, 41(1): 191. doi: 10.1186/s13046-022-02400-7. [9] Wu Q, Schapira M, Arrowsmith CH, et al. Protein arginine methylation: from enigmatic functions to therapeutic targeting [J]. Nat Rev Drug Discov, 2021, 20(7): 509-530. [10] Chen Y, Shao X, Zhao X, et al. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms [J]. Biomed Pharmacother, 2021, 144: 112252. doi: 10.1016/j.biopha.2021.112252. [11] Wang X, Wang C, Guan J, et al. Progress of breast cancer basic research in China [J]. Int J Biol Sci, 2021, 17(8): 2069-2079. [12] Trayes KP, Cokenakes SEH. Breast cancer treatment [J]. Am Fam Physician, 2021, 104(2): 171-178. [13] Wilkinson L, Gathani T. Understanding breast cancer as a global health concern [J]. Br J Radiol, 2022, 95(1130): 20211033. doi: 10.1259/bjr.20211033. [14] Trapani D, Ginsburg O, Fadelu T, et al. Global challenges and policy solutions in breast cancer control [J]. Cancer Treat Rev, 2022, 104: 102339. doi: 10.1016/j.ctrv.2022.102339. [15] Liu R, Gao J, Yang Y, et al. PHD finger protein 1(PHF1)is a novel reader for histone H4R3 symmetric dimethylation and coordinates with PRMT5-WDR77/CRL4B complex to promote tumorigenesis [J]. Nucleic Acids Res, 2018, 46(13): 6608-6626. [16] Wu Y, Wang Z, Zhang J, et al. Elevated expression of protein arginine methyltransferase 5 predicts the poor prognosis of breast cancer [J]. Tumour Biol, 2017, 39(4): 1010428317695917. doi: 10.1177/1010428317695917. [17] Chan-Penebre E, Kuplast KG, Majer CR, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models [J]. Nat Chem Biol, 2015, 11(6): 432-437. [18] Zhang Q, Harding R, Hou F, et al. Structural basis of the recruitment of ubiquitin-specific protease USP15 by spliceosome recycling factor SART3 [J]. J Biol Chem, 2016, 291(33): 17283-17292. [19] Long L, Thelen JP, Furgason M, et al. The U4/U6 recycling factor SART3 has histone chaperone activity and associates with USP15 to regulate H2B deubiquitination [J]. J Biol Chem, 2014, 289(13): 8916-8930. [20] Northam MR, Trujillo KM. Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks [J]. Nucleic Acids Res, 2016, 44(19): 9245-9255. [21] Hung SH, Wong RP, Ulrich HD, et al. Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication [J]. Proc Natl Acad Sci U S A, 2017, 114(11): E2205-E2214. [22] Hooda J, Novak M, Salomon MP, et al. Early loss of histone H2B monoubiquitylation alters chromatin accessibility and activates key immune pathways that facilitate progression of ovarian cancer [J]. Cancer Res, 2019, 79(4): 760-772. [23] Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers [J]. Mol Cancer, 2018, 17(1): 115. doi: 10.1186/s12943-018-0857-2. [24] Fan J, Bellon M, Ju M, et al. Clinical significance of FBXW7 loss of function in human cancers [J]. Mol Cancer, 2022, 21(1): 87. doi: 10.1186/s12943-018-0857-2. [25] Gao J, Liu R, Feng D, et al. Snail/PRMT5/NuRD complex contributes to DNA hypermethylation in cervical cancer by TET1 inhibition [J]. Cell Death Differ, 2021, 28(9): 2818-2836. [26] Liu X, He J, Mao L, et al. EPZ015666, a selective protein arginine methyltransferase 5(PRMT5)inhibitor with an antitumour effect in retinoblastoma [J]. Exp Eye Res, 2021, 202: 108286. doi: 10.1016/j.exer.2020.108286. |
[1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
[2] | 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10. |
[3] | 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87. |
[4] | 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26. |
[5] | 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46. |
[6] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[7] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
[8] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[9] | 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5. |
[10] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[11] | 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29. |
[12] | 林雪艳,张灿灿,田民乐,田永杰. 聚腺苷酸二磷酸核糖聚合酶-1在子宫内膜异位症中的表达及意义[J]. 山东大学学报 (医学版), 2022, 60(2): 27-31. |
[13] | 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26. |
[14] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
[15] | 周亚杰,王斐,于理想,余之刚. 女性乳腺癌保乳手术决策相关因素[J]. 山东大学学报 (医学版), 2022, 60(12): 1-6. |
|