您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (5): 98-106.doi: 10.6040/j.issn.1671-7554.0.2019.1394

• 公共卫生与管理学 • 上一篇    

高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响

李艳,孙凤娇,张天然,王雨心,张正铎,高希宝   

  1. 山东大学公共卫生学院,山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 高希宝. E-mail:chem@sdu.edu.cn

Effects of high-sugar, high-fat diet and different concentrations of selenium on lipid metabolism and oxidative stress in rats

LI Yan, SUN Fengjiao, ZHANG Tianran, WANG Yuxin, ZHANG Zhengduo, GAO Xibao   

  1. School of Public Health, Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 观察高糖、高脂饮食对大鼠脂代谢及氧化应激的影响以及不同膳食模式下添加不同浓度硒的效果差异。 方法 使用亚硒酸钠调节饲料中硒浓度,并根据饲料将90只大鼠随机分为9组,喂养16周,测定各组大鼠体质量,计算脏器系数,测定血清甘油三酯、总胆固醇、脂肪酶和硒浓度,制备肝脏、心脏匀浆后测定谷胱甘肽过氧化物酶、丙二醛、总超氧化物歧化酶、铜锌超氧化物歧化酶, 观察肝脏及心脏病理变化。 结果 高糖饮食大鼠甘油三酯及丙二醛、高脂饮食大鼠总胆固醇及丙二醛均高于普通饮食大鼠(P<0.05);普通中硒组大鼠的血清甘油三酯,普通高硒组心脏谷胱甘肽过氧化物酶均低于普通低硒组(P<0.05);高糖中硒组与高糖低硒组大鼠相比,肝脏谷胱甘肽过氧化物酶升高心脏丙二醛降低(P<0.05);高脂高硒组较高脂低中组血清甘油三酯及心脏丙二醛升高,高脂中硒组与高脂低硒组相比肝脏丙二醛下降(P<0.05);高糖高硒组高脂高硒组血硒升高(P<0.05)结论 适当补充硒对大鼠脂代谢及抗氧化作用有保护作用,性别因素可能影响高浓度硒对高糖、高脂大鼠的作用效果,具体机制有待进一步讨论。

关键词: 膳食模式, 高糖饮食, 高脂饮食, 硒, 脂代谢, 氧化应激

Abstract: Objective To observe the effects of high-sugar and high-fat diet on lipid metabolism and oxidative stress in rats and the effects of different selenium concentrations in different diets. Methods Sodium selenite was used to adjust the selenium concentration in the feed, and 90 rats were randomly divided into 9 groups and fed for 16 weeks. The body weight was measured, organ coefficient was calculated, and serum triglycerides(TG), total cholesterol(TC), concentrations of lipase and selenium were measured. After preparation of liver and heart homogenates, glutathione peroxidase(GPx), malondialdehyde(MDA), total superoxide dismutase(T-SOD), and copper-zinc superoxide dismutase(CuZu-SOD)were measured. Pathological changes of liver and heart were observed. Results High-sugar rats had higher TG and MDA, and high-fat rats had higher TC and MDA than normal-diet rats(P<0.05). Normal-medium-selenium rats had lower serum TG, and normal-high-selenium rats had lower cardiac GPx than normal-low-selenium rats(P<0.05). High-sugar-medium-selenium rats had higher hepatic GPx but lower cardiac MDA than high-sugar-low-selenium rats(P<0.05). High-fat-high-selenium rats had higher serum TG and cardiac MDA than high-fat-medium-selenium rats and high-fat-low-selenium rats(P<0.05). High-fat-medium-selenium rats had lower hepatic MDA than high-fat-low-selenium rats(P<0.05). High-glucose-high-selenium rats and high-fat-high-selenium rats had increased serum selenium(P<0.05). Conclusion Appropriate selenium supplementation has a protective effect on lipid metabolism and antioxidation in rats. Gender may affect the effect of high concentrations of selenium on high-glucose and high-fat rats. The mechanism remains to be explored.

Key words: Dietary pattern, High-sugar diet, High-fat diet, Selenium, Lipid metabolism, Oxidative stress

中图分类号: 

  • R15
[1] Schomburg L. Dietary Selenium and Human Health [J]. Nutrients, 2017, 9(1): 22.
[2] Wu G, Li Z, Ju W, et al. Cross-sectional study: relationship between serum selenium and hypertension in the Shandong Province of China [J]. Biol Trace Elem Res, 2018, 185(2): 295-301.
[3] Hasani M, Djalalinia S, Sharifi F, et al. Effect of selenium supplementation on lipid profile: a systematic review and meta-analysis [J]. Horm Metab Res, 2018, 50(10): 715-727.
[4] Ju W, Li X, Li Z, et al. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials [J]. J Trace Elem Med Biol, 2017, 44: 8-16. doi: 10.1016/j.jtemb.2017.04.009.
[5] Semiane N, Foufelle F, Ferré P, et al. High carbohydrate diet induces nonalcoholic steato-hepatitis(NASH)in a desert gerbil[J]. C R Biol, 2017, 340(1): 25-36.
[6] Mendes IKS, Matsuura C, Aguila MB, et al. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high-fat diet [J]. Appl Physiol Nutr Metab, 2018, 43(1): 23-29.
[7] Burgeiro A, Cerqueira MG, Varela-Rodriguez BM, et al. Glucose and lipid dysmetabolism in a rat model of prediabetes induced by a high-sucrose diet [J]. Nutrients, 2017, 9(6): 638.
[8] Kratz M, Baars T, Guyenet S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease [J]. Eur J Nutr, 2013, 52(1): 1-24.
[9] Han Q, Yeung SC, Ip MSM. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model [J]. Lipids Health Dis, 2018, 17(1): 255.
[10] Dong HL, Yuan N, Sun T, et al. Effects of selenium supplement on atherogenesis of ApoE-knockout mice fed high fat diet[J]. China Medical Abstracts, 2016, 44(2): 244.
[11] Farrokhian A, Bahmani F, Taghizadeh M, et al. Selenium supplementation affects insulin resistance and serum hs-CRP in patients with type 2 diabetes and coronary heart disease [J]. Horm Metab Res, 2016, 48(4): 263-268.
[12] Alehagen U, Aaseth J, Alexander J, et al. Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme Q10 for four years: A validation of previous 10-year follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly [J]. PLoS One, 2018, 13(4): 0193120. doi: 10.1371/journal.pone.0193120.
[13] Wang N, Tan HY, Li S, et al. Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant [J]. Oxid Med Cell Longev, 2017, 2017: 7478523. doi: 10.1155/2017/7478523.
[14] 时盼盼, 王芙蓉. 微量元素硒与高血压、冠心病相关性研究进展 [J]. 社区医学杂志, 2018, 16(1): 77-79.
[15] Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2019, 393(10184): 1958-1972.
[16] Hu X, Chandler JD, Orr ML, et al. Selenium supplementation alters hepatic energy and fatty acid metabolism in mice [J]. J Nutr, 2018, 148(5): 675-684.
[17] Qian Z, Qian ZY, Zhou HP, et al. Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet [J]. Lipids Health Dis, 2018, 17(1): 165.
[18] 满青青, 何丽. 高糖高脂饲料对Wistar大鼠生长和糖脂代谢的影响[J]. 卫生研究, 2009, 38(6): 722-724. MAN Qingqing, HE Li. Effects of high-sugar and high-fat diet on growth and carbohydrate, lipid metabolism in Wistar rats [J]. Journal of Hygiene Research, 2009, 38(6): 722-724.
[19] Chalkley SM, Hettiarachchi M, Chisholm DJ, et al. Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats [J]. Am J Physiol Endocrinol Metab, 2002, 282(6): 1231-1238.
[20] 苏琳, 刘玉兰. 高糖饮食及高脂饮食建立非酒精性脂肪肝大鼠模型的比较[J]. 实验动物科学, 2009, 26(3): 14-17.
[21] Ozay R, Uzar E, Aktas A, et al. The role of oxidative stress and inflammatory response in high-fat diet induced peripheral neuropathy [J]. J Chem Neuroanat, 2014, 55: 51-57. doi: 10.1016/j.jchemneu.2013.12.003.
[22] Farhangi MA, Nameni G, Hajiluian G, et al. Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat-diet induced obese rats [J]. BMC Cardiovasc Disord, 2017, 17(1): 161.
[23] 梁冰, 王舒然. 高脂饮食诱导肥胖导致线粒体损伤的研究现状[J]. 中华预防医学杂志, 2013, 47(4): 371-374.
[24] 田园, 牟维鹏, 李鹏高, 等. 补充不同水平亚硒酸钠和硒蛋氨酸对大鼠硒代谢的影响[J]. 卫生研究, 2004, 33(6): 749-751.
[25] 计峰, 苏琪, 赵学志, 等. 不同剂量补硒对大鼠氧化应激损伤的保护作用[J]. 营养学报, 2019, 41(1): 63-67. JI Feng, SU Qi, ZHAO Xuezhi, et al. Protective effect on oxidative stress injury by selenium supplementation in rats[J]. Acta Nutrimenta Sinica, 2019, 41(1): 63-67.
[26] Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
[1] 李宁 张征 张宏群 高希宝. 济南居民膳食硒摄入量与血清硒参考值调查[J]. 山东大学学报(医学版), 2209, 47(6): 121-122.
[2] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[3] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[4] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[5] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
[6] 李敏启,杜娟,杨盼盼,寇雨莹,柳珊珊. 氧化应激调控骨质疏松症的研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 16-24.
[7] 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34.
[8] 向琳,陈腊梅,王婧雯,李海铭,李浩宇,王菊,范玉琛,王凯. 30名健康志愿者饮用饮久舒对肝代谢酶的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 81-85.
[9] 张霁娟,于汉成,王蓝,陈诺,崔书萌,高希宝. 高脂膳食、硒对大鼠抗氧化功能的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 95-101.
[10] 孙凤娇,李艳,王雨心,张天然,吴虹,高希宝. 膳食结构与硒对大鼠糖代谢的作用[J]. 山东大学学报 (医学版), 2020, 58(2): 36-43.
[11] 吕岩,于潇,蔺新英,赵琦,王保珍. 聊城市老年女性膳食模式与抑郁症状的关系[J]. 山东大学学报 (医学版), 2020, 58(11): 103-108.
[12] 刘崇东,娄彤,董靖. 子宫内膜异位症恶变[J]. 山东大学学报 (医学版), 2019, 57(6): 27-32.
[13] 姜立娟,刘福强,蒋子允,李文娟,林鹏,王川,侯新国,陈丽. 达格列净改善超重及肥胖2型糖尿病患者脂代谢及内脏脂肪含量[J]. 山东大学学报 (医学版), 2019, 57(6): 87-93.
[14] 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26.
[15] 张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞,方雨晴,刘小民,马高亭,张小雨,张霄,王敏,李秀华. 艾地苯醌联合治疗帕金森病疗效的临床观察[J]. 山东大学学报 (医学版), 2019, 57(4): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!