您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (2): 36-43.doi: 10.6040/j.issn.1671-7554.0.2019.1393

• • 上一篇    下一篇

膳食结构与硒对大鼠糖代谢的作用

孙凤娇,李艳,王雨心,张天然,吴虹,高希宝   

  1. 山东大学公共卫生学院理化检验学系, 山东 济南 250012
  • 出版日期:2020-02-10 发布日期:2022-09-27
  • 通讯作者: 高希宝. E-mail:chem@sdu.edu.cn

Effects of dietary structure and selenium concentration on glucose metabolism in rats

SUN Fengjiao, LI Yan, WANG Yuxin, ZHANG Tianran, WU Hong, GAO Xibao   

  1. Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan 250012, Shandong, China
  • Online:2020-02-10 Published:2022-09-27

摘要: 目的 观察不同硒浓度和膳食结构对糖代谢的影响,探究膳食结构与硒对糖代谢的影响。 方法 选用6周龄Wistar大鼠150只,雌雄各半,随机分为15组,每组分别给予3种硒浓度和5种膳食结构的饲料共计15种进行喂养,每周测定1次体质量,4周后处死,测定其血清硒含量及血糖,分析不同硒浓度及膳食结构对体质量、血清硒含量及血糖的影响。 结果 硒浓度与膳食结构的作用存在性别差异。雌鼠体质量增长速度明显小于雄鼠,差异有统计学意义(P<0.001);雌鼠血清硒含量低于雄鼠,且除普通对照组外其他各组雌鼠与雄鼠的血清硒含量差异有统计学意义(P<0.05),不同硒浓度和膳食结构对血清硒含量均有影响,且对雌鼠血清硒含量的影响存在交互作用(P=0.003);雌鼠的血糖基本均低于雄鼠,且在高蛋白组、高糖组、高脂组雌鼠与雄鼠血糖差异均有统计学意义(P<0.05)。不同硒浓度和膳食结构对血糖的影响存在交互作用(P<0.05)。 结论 硒浓度和膳食结构对大鼠的血清硒含量和血糖的作用存在一定的交互作用,但具体作用机制有待进一步探究。

关键词: 硒, 膳食结构, 大鼠, 血糖, 糖代谢

Abstract: Objective To explore the effects of different selenium concentrations and dietary structures on glucose metabolism. Methods A total of 150 6-week-old Wistar rats were randomly divided into 15 groups, with 5 female and 5 male rats in each group. Each group was fed for 4 weeks with 3 different concentrations of selenium and 5 different dietary structures, altogether 15 kinds of feedings. The weight of rats was measured every week. After 4 weeks, the rats were sacrificed, the serum selenium and glucose levels were detected, and the effects of different selenium concentrations and dietary structures on glucose metabolism were analyzed. Results There were differences in effects between male and female rats: female rats had smaller growth rate of body weight than male rats(P<0.001); female rats had lower selenium level than male rats, and the difference was statistically significant except in the ordinary control group(P<0.05). Different selenium concentrations and dietary structures had effects on serum selenium level, and there was an interaction effect in female rats(P=0.003). Female rats had lower serum glucose level than male rats, and the differences were statistically significant in high-protein group, high-glucose group and high-fat group(P<0.05). There was an interaction between the effects of different selenium concentrations and dietary structures on blood glucose(P<0.05). Conclusion There is an interaction between selenium concentration and dietary structure on serum selenium and glucose levels in rats, but the specific mechanism remains to be further explored.

Key words: Selenium, Dietary structure, Rat, Serum glucose, Glucose metabolism

中图分类号: 

  • R15
[1] 张勇胜, 李仁兰, 刘妍, 等. 硒对人体健康作用的研究进展[J]. 内科, 2018, 13(4): 623-625.
[2] Kohler LN, Foote J, Kelley CP, et al. Selenium and Type 2 Diabetes: Systematic Review [J]. Nutrients, 2018, 10(12): 1924.
[3] 徐天娇, 刘勇, 孟瑾, 等. 胰岛素与硒对糖尿病大鼠骨骼肌细胞胰岛素信号转导的联合作用[J]. 细胞与分子免疫学杂志, 2013, 29(12): 1245-1250. XU Tianjiao, LIU Yong, MENG Jin, et al. The combined effects of insulin and selenium in improving insulin signal transduction in skeletal muscles of diabetic rats [J]. Chinese Journal of Cellular and Molecular Immunology, 2013, 29(12): 1245-1250.
[4] Lu CW, Chang HH, Yang KC, et al. High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance [J]. BMJ Open Diabetes Res Care, 2016, 4(1): 000253.
[5] Li Z, Li X, Ju W, et al. High serum selenium levels are associated with impaired fasting glucose and elevated fasting serum glucose in Linyi, China [J]. J Trace Elem Med Biol, 2018, 45: 64-69. doi: 10.1016/j.jtemb.
[6] Cai Z, Zhang J, Li H. Selenium, aging and aging-related diseases [J]. Aging Clin Exp Res, 2019, 31(8): 1035-1047.
[7] Wang N, Tan HY, Li S, et al. Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant [J]. Oxid Med Cell Longev, 2017, 2017: 7478523. doi: 10.1155/2017/7478523.
[8] Murano K, Ogino H, Okuno T, et al. Role of supplementary selenium on the induction of insulin resistance and oxidative stress in NSY mice fed a high fat diet [J]. Biol Pharm Bull, 2018, 41(1): 92-98.
[9] Ju W, Ji M, Li X, et al. Relationship between higher serum selenium level and adverse blood lipid profile [J]. Clin Nutr, 2018, 37(5): 1512-1517.
[10] Huisman MJ, Soedamah-Muthu SS, Vermeulen E, et al. Does a high sugar high fat dietary pattern explain the unequal burden in prevalence of type 2 diabetes in a multi-ethnic population in the Netherlands? The HELIUS Study [J]. Nutrients, 2018, 10(1): 92.
[11] Moreira PI. High-sugar diets, type 2 diabetes and Alzheimers disease [J]. Curr Opin Clin Nutr Metab Care, 2013, 16(4): 440-445.
[12] Leppink J. Two-Way and Three-Way Factorial Designs [M]. Switzerland: Springer International Publishing, 2019. doi:10.1007/978-3-030-21241-4_11.
[13] Rayman MP. Selenium and human health [J]. Lancet, 2012, 379(9822): 1256-1268.
[14] Vinceti M, Filippini T, Rothman KJ. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis [J]. Eur J Epidemiol, 2018, 33(9): 789-810.
[15] Kohler LN, Florea A, Kelley CP, et al. Higher plasma selenium concentrations are associated with increased odds of prevalent type 2 diabetes [J]. J Nutr, 2018, 148(8): 1333-1340.
[16] Faghihi T, Radfar M, Barmal M, et al. A randomized, placebo-controlled trial of selenium supplementation in patients with type 2 diabetes: effects on glucose homeostasis, oxidative stress, and lipid profile [J]. Am J Ther, 2014, 21(6): 491-495.
[17] Ahmadvand H, Ghasemi Dehnoo M, Cheraghi R, et al. Amelioration of altered serum, liver, and kidney antioxidant enzymes activities by sodium selenite in alloxan-induced diabetic rats [J]. Rep Biochem Mol Biol, 2014, 3(1): 14-20.
[18] Zhou J, Xu G, Bai Z, et al. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway [J]. Toxicol Appl Pharmacol, 2015, 289(3): 409-418.
[19] Wei J, Zeng C, Gong QY, et al. The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults [J]. Nutr J, 2015, 14: 18. doi: 10.1186/s12937-015-0007-2.
[20] Gao Y, Xu Y, Ruan J, et al. Selenium affects the activity of black tea in preventing metabolic syndrome in high-fat diet-fed Sprague-Dawley rats [J]. J Sci Food Agric, 2019. doi: 10.1002/jsfa.10027.
[21] 李密转, 杨静, 王攀, 等. 锌硒茶对高脂高糖饮食致大鼠糖脂代谢紊乱的干预作用[J]. 实用医学杂志, 2017, 33(4): 537-539. LI Mizhuan, YANG Jing, WANG Pan, et al. Effects of zinc selenium tea on metabolic syndrome induced by high-fat, high-sugar diets in rats [J]. The Journal of Practical Medicine, 2017, 33(4): 537-539.
[22] 张经纬, 张静姝, 周朋辉, 等. 富硒酵母对高脂饮食大鼠血脂和抗氧化指标的影响[J]. 中国慢性病预防与控制, 2016, 24(3): 216-218.
[23] 范颖, 李新, 刘烨, 等. 黄芪葛根配伍对糖尿病大鼠肝脏INS、ADPN、LEP、GLUT-4的影响及其交互作用[J].中华中医药杂志, 2015, 30(10): 3713-3716. FAN Ying, LI Xin, LIU Ye, et al. Influence and interaction effect of compatibility of milkvetch root and kudzuvine rooton INS, ADPN, LEP, GLUT-4 in liver tissue of diabetes rats [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2015, 30(10): 3713-3716.
[24] 郝明芬, 范颖, 李新, 等. 基于胰腺胰岛素及其受体变化探讨黄芪葛根配伍调节糖尿病大鼠血糖的交互作用[J].中国中医基础医学杂志, 2015, 21(10): 1245-1247. HAN Mingfen,FAN Ying,LI Xin, et al. Exploration of the interaction of compatibility of radix astragali and radix puerariae based on the change INS and InsR in pancreas of diabetic rats [J]. Journal of Basic Chinese Medicine, 2015, 21(10): 1245-1247.
[25] Mohamed SM, Moustafa MM, Samy SH, et al. Interactive effects of apelin, renin-angiotensin system and nitric oxide in treatment of obesity-induced type 2 diabetes mellitus in male albino rats [J]. Arch Physiol Biochem, 2019, 125(3): 244-254.
[26] 计峰, 苏琪, 赵学志, 等. 不同剂量补硒对大鼠氧化应激损伤的保护作用[J]. 营养学报, 2019, 41(1): 63-67. JI Feng, SU Qi, ZHAO Xuezhi, et al. Protective effect on oxidative stress injury by selenium supplementation in rats [J]. Acta Nutrimenta Sinica, 2019, 41(1): 63-67.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-.
[3] 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-.
[4] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[5] 李宁 张征 张宏群 高希宝. 济南居民膳食硒摄入量与血清硒参考值调查[J]. 山东大学学报(医学版), 2209, 47(6): 121-122.
[6] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[7] 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23.
[8] 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21.
[9] 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60.
[10] 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62.
[11] 王海鹏,邹娟娟,高春苗,王孝,王岩,李延忠. OSAHS慢性间歇性低氧大鼠模型的建立及意义[J]. 山东大学学报 (医学版), 2021, 59(2): 7-13.
[12] 马雪,王凤雪,张书乐,李桂梅. 9例以顽固性低血糖为首要表现的婴儿垂体柄阻断综合征的临床特征报道[J]. 山东大学学报 (医学版), 2021, 59(2): 60-65.
[13] 张霁娟,于汉成,王蓝,陈诺,崔书萌,高希宝. 高脂膳食、硒对大鼠抗氧化功能的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 95-101.
[14] 扈艳雯,王志媛,郁万江,赵蕙琛,韩合理,徐志鹏,马红,张玉超,刘元涛. 52例肥胖患者脂肪分布与代谢综合征及糖代谢指标的相关性[J]. 山东大学学报 (医学版), 2020, 1(8): 101-106.
[15] 张星星,姜慧苗,马建梅,崔唯. IAA检测阴性的胰岛素自身免疫综合征1例[J]. 山东大学学报 (医学版), 2020, 58(2): 122-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!