您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (3): 38-41.doi: 10.6040/j.issn.1671-7554.0.2019.053

• • 上一篇    

裂萼苔水生变种化学成分

张教真,娄红祥   

  1. 山东大学药学院 天然产物化学生物学教育部重点实验室, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 娄红祥. E-mail:louhongxiang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81703375);山东省自然科学基金(ZR2017BH068)

Chemical constituents of Chiloscyphus polyanthus var. rivularis

ZHANG Jiaozhen, LOU Hongxiang   

  1. Key Lab of Chemical Biology(Ministry of Education), Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 分离并鉴定苔藓植物裂萼苔水生变种中的化学成分。 方法 利用MCI柱层析、硅胶柱层析、凝胶柱层析、半制备HPLC等技术手段对裂萼苔样品进行分离纯化,利用NMR、HRESIMS等波谱数据进行结构解析和鉴定。 结果 从该植物中分离得到5个化合物,包括2个新的桉烷型倍半萜,分别命名为(3S,7R,10S)-7-hydroxy-3-methoxy-eudesma-4E-ene(1)和(3S,7R,10S)-7-hydroxy-3-ethyoxyl-eudesma-4E-ene(2),1个愈创木烷型倍半萜(guaianediol,3),1个半日花烷型二萜(nivenolide,4)以及1个羽扇豆烷型三萜(betulin,5)。 结论 1和2为新化合物, 3~5为首次从裂萼苔属植物中分离出来的已知化合物。

关键词: 苔藓植物, 裂萼苔水生变种, 桉烷型倍半萜, 愈创木烷型倍半萜, 二萜, 三萜

Abstract: Objective To study the chemical constituents of Chiloscyphus polyanthus var. rivularis. Methods The chemical constituents were isolated and identified on the basis of various chromatographic methods such as MCI gel, silica gel, Sephadex LH-20 column, and semi-preparation HPLC as well as a combination of their spectroscopic data, such as NMR and HRESIMS. Results Isolation of Chiloscyphus polyanthus var. rivularis afforded five compounds, including two new eudesmane type sesquiterpenoids, which were named (3S,7R,10S)-7-hydroxy-3-methoxy-eudesma-4E-ene(1)and (3S,7R,10S)-7-hydroxy-3-ethyoxyl-eudesma-4E-ene(2), one guaiane type sesquiterpenoid(guaianediol, 3), one labdane-type diterpenoid(nivenolide, 4), and one triterpenoid(betulin, 5). Conclusion Compounds 1 and 2 are previously undescribed and compounds 3-5 are isolated from the plants in genus Chiloscyphus for the first time.

Key words: Bryophytes, Chiloscyphus polyanthus var. rivularis, Eudesmane type sesquiterpenoids, Guaiane type sesquiterpenoid, Diterpenoid, Triterpenoid

中图分类号: 

  • R574
[1] Wellman CH, Osterloff PL, Mohiuddin U. Fragments of the earliest land plants[J]. Nature, 2003, 425(6955): 282-285.
[2] Bowman JL, Kohchi T, Yamato KT, et al. Insights into land plant evolution garnered from the marchantia polymorpha genome[J]. Cell, 2017, 171(2): 287-304.e15.
[3] 吴鹏程. 苔藓植物生物学[M]. 北京: 科学出版社, 1998.
[4] 娄红祥. 苔藓植物化学与生物学[M]. 北京: 北京科学技术出版社, 2006.
[5] Asakawa Y, Ludwiczuk A. Chemical constituents of bryophytes: structures and biological activity[J]. J Nat Prod, 2018, 81(3): 641-660.
[6] Asakawa Y, Ludwiczuk A, Nagashima F. Phytochemical and biological studies of bryophytes[J]. Phytochemistry, 2013, 91: 52-80. doi:10.1016/j.phytochem.2012.04.012.
[7] Asakawa Y. Biologically active compounds from bryophytes[J]. Pure and Applied Chemistry, 2007, 79(4): 557-580.
[8] Zinsmeister HD, Becker H, Eicher T. Bryophytes, a source of biologically active, naturally occurring material?[J]. Angew Chem Int Ed Engl, 1991, 30(2): 130-147.
[9] Guo DX, Zhu RX, Wang XN, et al. Scaparvin A, a novel caged cis-clerodane with an unprecedented C-6/C-11 bond, and related diterpenoids from the liverwort Scapania parva[J]. Org Lett, 2010, 12(19): 4404-4407.
[10] Wang LN, Zhang JZ, Li X, et al. Pallambins A and B, unprecedented hexacyclic 19-nor-secolabdane diterpenoids from the Chinese liverwort Pallavicinia ambigua[J]. Org Lett, 2012, 14(4): 1102-1105.
[11] Zhou JC, Zhang JZ, Cheng AX, et al. Highly rigid labdane-type diterpenoids from a Chinese liverwort and light-driven structure diversification[J]. Org Lett, 2015, 17(14): 3560-3563.
[12] Zhou JC, Zhang JZ, Li RJ, et al. Hapmnioides A-C, rearranged labdane-type diterpenoids from the Chinese liverwort haplomitrium mnioides[J]. Org Lett, 2016, 18(17): 4274-4276.
[13] Han JJ, Zhang JZ, Zhu RX, et al. Plagiochianins A and B, two ent-2, 3-seco-aromadendrane derivatives from the liverwort Plagiochila duthiana[J]. Org Lett, 2018, 20(20): 6550-6553.
[14] Wang YY, Wang LN, Hu ZY, et al. A novel derivative of riccardin D induces cell death through lysosomal rupture in vitro and inhibits tumor growth in vivo[J]. Cancer Lett, 2013, 329(2): 207-216.
[15] Lin ZM, Guo YX, Gao YH, et al. Ent-kaurane diterpenoids from Chinese liverworts and their antitumor activities through michael addition as detected in situ by a fluorescence probe[J]. J Med Chem, 2015, 58(9): 3944-3956.
[16] el Sayed KA, Hamann MT. A new norcembranoid dimer from the red sea soft coral Sinularia gardineri[J]. J Nat Prod, 1996, 59(7): 687-689.
[17] Rojas ET, Rodriguez-Hahn L. Nivenolide, a diterpene lactone from Croton niveus[J]. Phytochemistry, 1978, 17(3): 574-575.
[18] 王晓林, 李良琼, 李美蓉. 扁枝槲寄生化学成分研究(Ⅲ)[J]. 华西药学杂志, 1995, 10(1): 1-3. WANG Xiaolin, LI Liangqiong, LI Meirong. Studies on the chemical constituents of Viscum articulatum Burm.f.(Ⅲ)[J]. West China Journal of Pharmaceutcal Sciences, 1995, 10(1): 1-3.
[19] 高谦.中国苔藓志[M]. 9卷.北京: 科学出版社, 2003.
[20] Ma B, Lu ZQ, Guo HF, et al. Rearranged calamenene and eudesmane sesquiterpenoids from two Chinese liverworts[J]. HCA, 2007, 90(1): 52-57.
[21] Toyota M, Saito T, Asakawa Y. The absolute configuration of eudesmane-type sesquiterpenoids found in the Japanese liverwort Chiloscyphus polyanthos[J]. Phytochemistry, 1999, 51(7): 913-920.
[22] Xie CF, Sun B, Guo DX, et al. Terpenoids from the Chinese liverwort chiloscyphus polyanthus[J]. HCA, 2011, 94(3): 534-538.
[23] Zhang JZ, Qiao YN, Li L, et al. Ent-eudesmane-type sesquiterpenoids from the Chinese liverwort chiloscyphus polyanthus var. rivularis[J]. Planta Med, 2016, 82(11/12): 1128-1133.
[24] Zhang JZ, Wang YJ, Zhu RX, et al. Cyperane and eudesmane-type sesquiterpenoids from Chinese liverwort and their anti-diabetic nephropathy potential[J]. RSC Adv, 2018, 8(68): 39091-39097.
[25] Wu C, Gunatilaka AA, McCabe FL, et al. Bioactive and other sesquiterpenes from Chiloscyphus rivularis[J]. J Nat Prod, 1997, 60(12): 1281-1286.
[26] Harrison LJ, Asakawa Y. Oppositane and chiloscyphane sesquiterpenoids from the liverwort Chiloscyphus pallescens[J]. Phytochemistry, 1991, 30(11): 3806-3807.
[27] Cullmann F, Schmidt A, Schuld F, et al. Lignans from the liverworts Lepidozia incurvata, Chiloscyphus polyanthos and Jungermannia exsertifolia ssp. cordifolia[J]. Phytochemistry, 1999, 52(8): 1647-1650.
[28] Asakawa Y. Chemosystematics of the hepaticae[J]. Phytochemistry, 2004, 65(6): 623-669.
[1] 王婧,刘小转,许芳芳. 肝豆状核变性的ATP7B基因变异分析及产前诊断[J]. 山东大学学报 (医学版), 2022, 60(2): 32-36.
[2] 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139.
[3] 鞠建华,杨镇业,李青连,韩亚楠,李艳青,乔伊君,杨虎,张华然. 微生物药物研究开发现状与思考[J]. 山东大学学报 (医学版), 2021, 59(9): 43-50,63.
[4] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[5] 夏晓娜,黄召弟,任庆国,刘枫,邓贺,任国荣,段建东,王韶玉. CT双期增强扫描对182枚甲状腺良恶性结节的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(7): 57-62.
[6] 王宁,郭振江,张媛媛,王晶,郭伟,王金荣,崔朝勃. 定期超声检查在中心静脉置入设备相关深静脉血栓诊治中的应用价值[J]. 山东大学学报 (医学版), 2021, 59(7): 63-67.
[7] 杜娇娇,庄向华,陈诗鸿,王雪萌,姜冬青,吴菲,韩晓琳,华梦羽,宋玉文. 绝经后骨质疏松症患者血清IL-31、IL-33表达变化[J]. 山东大学学报 (医学版), 2021, 59(6): 45-50.
[8] 陈诗鸿. 糖皮质激素性骨质疏松症研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 33-37.
[9] 司海朋,张文灿,李乐,周鑫. Kümmell's病的危险因素和诊治研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 25-32.
[10] 李敏启,杜娟,杨盼盼,寇雨莹,柳珊珊. 氧化应激调控骨质疏松症的研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 16-24.
[11] 程晓光,卢艳慧. 男性骨质疏松:一个长期被忽视的问题[J]. 山东大学学报 (医学版), 2021, 59(6): 5-9.
[12] 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21.
[13] 贾明旺,廖广园,熊明媚,徐文婷,王银玲,王懿春. 84例妊娠合并肺高血压患者预后的临床分析[J]. 山东大学学报 (医学版), 2021, 59(1): 34-39.
[14] 甄秋来,吕欣然,叶辉,丁绪超,柴小雪,胡辛,周明,曹莉莉. 基于TCGA数据库预测结肠癌预后基因及其临床应用价值[J]. 山东大学学报 (医学版), 2021, 59(1): 64-71.
[15] 尹义龙,袭肖明. 眼科疾病智能诊断方法最新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 33-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!