您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (1): 55-61.doi: 10.6040/j.issn.1671-7554.0.2018.1089

• • 上一篇    

网络药理学预测麻黄治疗哮喘的抗炎作用机制

陈欧1,2,李国勇3,刘爱红2,朱晓波2,陈少杰2,王一彪2   

  1. 1. 山东大学护理学院社区研究室, 山东 济南 250012;2. 山东大学第二医院小儿内科, 山东 济南 250033;〓3. 山东省食品药品监督管理局审评认证中心, 山东 济南 250014
  • 发布日期:2022-09-27
  • 通讯作者: 王一彪. E-mail: 351337075@qq.com
  • 基金资助:
    国家自然科学基金(81400072);山东省自然科学基金(ZR2013HQ047);山东省自然科学基金(ZR2016HM67)

Anti-inflammatory mechanism of ephedra treatment of asthma based on network pharmacology

CHEN Ou1,2, LI Guoyong3, LIU Aihong2, ZHU Xiaobo2, CHEN Shaojie2, WANG Yibiao2   

  1. 1. Community Room, School of Nursing, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Pediatrics, The Second Hospital of Shandong University, Jinan 250033, Shandong, China;
    3. Certification Review Center of Shandong Food and Drug Administration, Jinan 250014, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨运用网络药理学方法预测麻黄治疗哮喘的抗炎靶点及其相关信号通路,发现哮喘的发病机制。 方法 在TCMSP数据库中搜索并筛选麻黄的活性成分,运用PharmMapper数据库预测活性成分的作用靶点,并进行分子对接。应用cytoscape3.6.1软件构建麻黄活性成分-预测靶点网络,并对网络拓扑结构进行分析。TTD数据库中搜索抗炎靶点,建立蛋白互作网络,并与麻黄活性成分-预测靶点网络融合,筛选活性成分作用的抗炎靶点。构建麻黄抗炎靶点对抗哮喘的体内反应网络,筛选与哮喘发病相关的抗炎靶点。使用Enrichr数据库以及cytoscape3.6.1对预测的麻黄治疗哮喘的抗炎靶点进行KEGG生物通路富集分析。 结果 筛选出23个化合物,对应156个靶点蛋白,其中表皮活性生长因子受体(EGFR)、E选择素(SELE)、巨噬细胞迁移抑制因子(MIF)、有丝分裂原激活蛋白激酶14(MAPK 14)4个靶点可能是麻黄治疗哮喘的重要抗炎靶点。KEGG分析得到的与这些抗炎靶点相关的主要信号通路有上皮细胞信号通路等。 结论 EGFR、SELE、MIF、MAPK14可能是麻黄在哮喘治疗中发挥抗炎作用的主要靶点,控制哮喘发生和发展,延缓病情恶化,可考虑整体控制这些抗炎靶点以及信号通路网络,而不仅仅是针对单一途径、疾病的关键靶点。

关键词: 哮喘, 麻黄, 网络药理学, 抗炎, 靶点预测, 通路

Abstract: Objective To explore the pathogenesis of asthma by predicting the anti-inflammatory targets and related signaling pathway of ephedra therapy based on network pharmacology. Methods The active ingredients of ephedra were searched and screened in TCMSP database. The targets of ingredients were predicted with PharmMapper and molecular docking was performed. Then ingredients-targets network was established and analyzed with cytoscape3.6.1. The anti-inflammatory targets in TTD database were searched to build PPI network, which was merged with the ingredients-targets network to screen anti-inflammatory targets connected with ephedra. The vivo reaction network of ephedra anti-inflammatory targets against asthma was constructed to screen anti-inflammatory targets related to asthma. KEGG enrichment analysis was performed with Enrichr database and cytoscape3.6.1. Results Altogether 23 active ingredients were screened and 156 targets were obtained. Epidermal active growth factor receptor(EGFR), E-selectin(SELE), macrophage migration inhibitory factor(MIF), mitogen-activated protein kinase 14(MAPK14)might be the important anti- 山 东 大 学 学 报 (医 学 版)57卷1期 -陈欧,等.网络药理学预测麻黄治疗哮喘的抗炎作用机制 \=-inflammatory targets of ephedra treatment of asthma. All these pathways had epithelial cell signaling pathways. Conclusion The anti-inflammatory mechanism of ephedra treatment of asthma may be related to EGFR, SELE, MIF, MAPK14 and their signaling pathways. To prevent the exacerbation of asthma, instead of a single pathway or a single target, all these targets and their signaling pathways should be controlled holistically.

Key words: Asthma, Ephedra, Network pharmacology, Anti-inflammatory, Target prediction, Pathway

中图分类号: 

  • R725.4
[1] Olin JT, Wechsler ME. Asthma: pathogenesis and novel drugs for treatment[J]. BMJ, 2014, 24, 349: g5517. doi: 10.1136/bmj.g5517.
[2] Drake MG, Scott GD, Blum ED, et al. Eosinophils increase airway sensory nerve density in mice and in human asthma[J]. Sci Trans Med, 2018, 10(457), pii: eaar8477. doi: 10.1126/scitranslmed.aar8477.
[3] 杨昕宇, 肖长芳, 张凯熠, 等. 麻黄临床应用与药理作用研究进展[J]. 中华中医药学刊, 2015, 33(12): 2874-2877. YANG Xiyu, XIAO Changfang, ZHANG Kaiyi, et al. Research Progress on Clinical Application and Pharmacological Functions of Ephedra[J]. Chinese archives of traditional Chinese medicine, 2015, 33(12): 2874-2877.
[4] Hasan S, Bonde BK, Buchan NS, et al. Network analysis has diverse roles in drug discovery[J]. Drug Discov Today, 2012, 17(15-16): 869-874.
[5] Zhai L, Ning ZW, Huang T, et al. Cyclocarya paliurus Leaves Tea Improves Dyslipidemia in Diabetic Mice: A Lipidomics-Based Network Pharmacology Study[J]. Front Pharmacol, 2018, 9: 973. doi: 10.3389/fphar.2018.00973.
[6] 汝锦龙. 中药系统药理学数据库和分析平台的构建和应用[D].咸阳: 西北农林科技大学, 2015.
[7] Xu X, Zhang WX, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability[J]. Int J Mol Sci, 2012, 13(6): 6964-6982.
[8] Yamanishi Y, Kotera M, Kanehisa M, et al. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework[J]. Bioinformatics, 2010, 26(12): i246-i254. doi: 10.1093/bioinformatics/btq176.
[9] 刘学. 基于网络药理学方法研究玉屏风散治疗哮喘的作用机制[D]. 成都: 西南交通大学, 2017.
[10] Bi YH, Zhang LH, Chen SJ, et al. Antitumor Mechanisms of Curcumae Rhizoma Based on Network Pharmacology[J]. Evid Based Complement Alternat Med, 2018, 2018: 4509892. doi: 10.1155/2018/4509892.
[11] Kun-Yi H, Yukiko M, Yoshiyuki A, et al. Systemsdock: a web server of network pharmacology-based prediction and analysis[J]. Nucleic Acids Res, 2016, 44(W1): W507-W513. doi: 10.1093/nar/gkw335.
[12] Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8(12): e83922. doi:10.1371/journal.pone.0083922.
[13] Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368. doi: 10.1093/nar/gkw937.
[14] 雷奇林, 黄雅兰, 钟茜, 等. 基于网络药理学的黄芩抗炎作用机制研究[J]. 中草药, 2018, 49(15): 3523-3530. LEI Qilin, HUANG Yalan, ZHONG Qian, et al. Anti-inflammatory mechanism of Scutellarlae Radix based on network pharmacology[J]. Chinese Traditional and Herbal Drugs, 2018, 49(15): 3523-3530.
[15] Casale TB, Pacou M, Mesana L, et al. Reslizumab Compared with Benralizumab in Patients with Eosinophilic Asthma: A Systematic Literature Review and Network Meta-Analysis[J]. J Allergy Clin Immunol Pract, 2018. pii: S2213-2198(18)30576-2. doi: 10.1016/j.jaip.2018.08.036
[16] Hekking PP, Bel EH. Developing and emerging clinical asthma phenotypes[J]. J Allergy Clin Immunol Pract, 2014, 2(6): 671-680.
[17] Chen SJ, Cui MC. Systematic Understanding of the Mechanism of Salvianolic Acid A via Computational Target Fishing[J]. Molecules, 2017, 22(4). pii: E644. doi: 10.3390/molecules22040644.
[18] 朱婉婷, 范雪梅, 位华, 等. 基于网络药理学探讨阿帕替尼治疗乳腺癌的作用制剂[J]. 中国药学杂志, 2016, 51(18): 1569-1573. ZHU Wanting, FAN Xuemei, WEI Hua, et al. Mechanism Research of Apatinib-treated Breast Cancer Based on Network Pharmacology[J]. Chinese Pharmaceutical Journal, 2016, 51(18): 1569-1573.
[19] Sokolova EA, Vodeneev VA, Deyev SM, et al. 3D in vitro models of tumors expressing EGFR family receptors: a potent tool for studying receptor biology and targeted drug development[J]. Drug Discov today, 2018, pii: S1359-6446(18)30168-5. doi: 10.1016/j.drudis.2018.09.003.
[20] Vinod Prabhu V, Elangovan P, Niranjali Devaraj S, et al. Targeting apoptosis by 1, 2-diazole through regulation of EGFR, Bcl-2 and CDK-2 mediated signaling pathway in human non-small cell lung carcinoma A549 cells[J]. Gene, 2018, 679: 352-359. doi:10.1016/j.gene.2018.09.014.
[21] 晋乐飞, 吴卫东, 段丽菊, 等. 表皮生长因子受体在臭氧致小鼠肺部炎症中的作用[J]. 郑州大学学报(医学版), 2016, 51(4): 450-454. JIN Yuefei, WU Weidong, DUAN Liju, et al. Role of EGF receptor in ozone-induced lung inflammation in mice[J]. Journal of Zhengzhou University(Medical Sciences), 2016, 51(4): 450-454.
[22] Yoshikawa T, Kanazawa H. Integrated effect of EGFR and PAR-1 signaling crosstalk on airway hyperresponsiveness[J]. Int J Mol Med, 2012, 30(1): 41-48.
[23] Habibovic A, Hristova M, Heppner DE, et al. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma[J]. JCI Insight, 2016, 1(18): e88811. doi:10.1172/jci.insight.88811
[24] Wang X, Yang XQ, Li Y, et al. Lyn kinase represses mucus hypersecretion by regulating IL-13-induced endoplasmic reticulum stress in asthma[J]. EBioMedicine, 2017, 15: 137-149. doi:10.1016/j.ebiom.2016.12.010.
[25] Tsoref O, Tyomkin D, Amit U, et al. E-selectin-targeted copolymer reduces atherosclerotic lesions, adverse cardiac remodeling, and dysfunction[J]. J Control Release, 2018, 288: 136-147. doi: 10.1016/j.jconrel.2018.08.029.
[26] Hamzaoui A, Ammar J, El Mekki F, et al. Elevation of serum soluble E-selectin and VCAM-1 in severe asthma[J]. Mediators Inflamm, 2001, 10(6): 339-342.
[27] Bijanzadeh M, Ramachandra NB, Mahesh PA, et al. Soluble intercellular adhesion molecule-1 and E-selectin in patients with asthma exacerbation[J]. Lung, 2009, 187(5): 315-320.
[28] Sabroe I, Pease JE, Williams TJ. Asthma and MIF: innately Th1 and Th2[J]. Clin Exp Allergy, 2000, 30(9): 1194-1196.
[29] Yang M, Kumar RK, Hansbro PM, et al. Emerging roles of pulmonary macrophages in driving the development of severe asthma[J]. J Leukoc Biol, 2012, 91(4): 557-569.
[30] Wu J, Fu S, Ren X, et al. Association of MIF promoter polymorphisms with childhood asthma in a northeastern Chinese population[J]. Tissue Antigens, 2009, 73(4): 302-306.
[1] 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66.
[2] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[3] 袁孟绮,霍凤蕾,任会萍,郭秋爽,蓝菁. Sdccag3通过Wnt通路对高脂血症大鼠种植体骨结合的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 66-73.
[4] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[5] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[6] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[7] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[8] 李明波,黄燕波,刘俊城,任东成,谭成双,徐继禧,丁金勇. 黄芪桂枝五物汤治疗强直性脊柱炎的网络药理学探讨[J]. 山东大学学报 (医学版), 2022, 60(3): 29-38.
[9] 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154.
[10] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[11] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[12] 于莹,张功,刘晶,颜世童,韩涛,黄海量. 基于网络药理学和分子对接方法探析黄芪预防新型冠状病毒肺炎的潜在作用机制[J]. 山东大学学报 (医学版), 2021, 59(4): 6-16.
[13] 罗慧臣,胡丹慧,张济. miR-203-3p靶向TREM1基因调控TGF-β1/p38MAPK信号通路对狼疮性肾炎小鼠肾小管上皮细胞增殖和凋亡的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 18-25.
[14] 刘晓菲,梁瀛,张丛溪,王娟,潘云,徐嘉蔚,常春,董亮. 92例哮喘患者血清瘦素与诱导痰嗜酸性粒细胞的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 27-33.
[15] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!