您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (12): 13-19.doi: 10.6040/j.issn.1671-7554.0.2021.0823

• • 上一篇    下一篇

温度相关的疾病负担研究进展

许怀悦,王情,马润美,班婕,李湉湉   

  1. 中国疾病预防控制中心环境与人群健康重点实验室, 中国疾病预防控制中心环境与健康相关产品安全所, 北京 100021
  • 发布日期:2021-12-29
  • 通讯作者: 王情. E-mail:wangqing@nieh.chinacdc.cn
  • 基金资助:
    国家科技基础资源调查专项(2017FY101204)

Temperature-related burden of disease: a review of recent studies

XU Huaiyue, WANG Qing, MA Runmei, BAN Jie, LI Tiantian   

  1. China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
  • Published:2021-12-29

摘要: 气温作为全球性环境危险因素之一,能增加人群发病和死亡风险,造成健康经济损失。评估温度相关疾病负担对于制定及实施适应性政策具有重要意义。论文聚焦近年来全球各国温度相关疾病负担研究,梳理和评价相关研究指标、评估方法与现状,为温度相关疾病负担的评估及预估研究提出建议。

关键词: 温度, 疾病负担, 超额死亡数, 伤残调整寿命年, 经济损失

Abstract: As a worldwide environmental risk factor, ambient temperature can increase the mortality and morbidity of affected population, and cause economic losses. It is crucial to estimate temperature-related burden of disease(BD)to support the planning and implement of relevant policies to protect public health and adapt to climate change. This review summarized the evidence on temperature-related BD in the current research, systematically identified advantages and limitations of methodologies to measure the different indicators of temperature-related BD, and provided recommendations for studies assessing and estimating temperature-related BD.

Key words: Temperature, Burden of disease, Excess mortality, Disability adjusted life year, Economic loss

中图分类号: 

  • R122.2
[1] Watts N, Amann M, Arnell N, et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises[J]. The Lancet, 2021, 397(10269): 129-170.
[2] The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker[R]. Cambridge University Press: IPCC, 2013.
[3] Watts N, Amann M, Arnell N, et al. The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come[J]. Lancet, 2018, 392(10163): 2479-2514.
[4] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021.
[5] World Health Organization. WHO methods and data sources for global burden of disease estimates 2000-2015[ER/OR]. [2021-06-18]. http:// www.who.int/healthinfo/statistics
[6] Huynen MM, Martens P. Climate Change Effects on heat- and cold-related mortality in the netherlands: a scenario-based integrated environmental health impact assessment[J]. Int J Environ Res Public Health, 2015, 12(10): 13295-13320.
[7] Schwartz JD, Lee M, Kinney PL, et al. Projections of temperature-attributable premature deaths in 209 US cities using a cluster-based Poisson approach[J]. Environ Heal, 2015, 14(1): 85.
[8] Heaviside C, Vardoulakis S, Cai XM. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK[J]. Environ Heal, 2016, 15(Suppl 1): 27.
[9] Carmona R, Linares C, Ortiz C, et al. Spatial variability in threshold temperatures of heat wave mortality: impact assessment on prevention plans[J]. Int J Environ Health Res, 2017, 27(6): 463-475.
[10] Mercereau L, Todd N, Rey G, et al. Comparison of the temperature-mortality relationship in foreign born and native born died in France between 2000 and 2009[J]. Int J Biometeorol, 2017, 61(10): 1873-1884.
[11] GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1223-1249.
[12] Yang J, Zhou M, Ren Z, et al. Projecting heat-related excess mortality under climate change scenarios in China[J]. Nat Commun, 2021, 12(1): 1039.
[13] Cai WJ, Zhang C, Suen HP, et al. The 2020 China report of the Lancet Countdown on health and climate change[J]. Lancet Public Heal, 2021, 6(1): e64-e81.
[14] Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. Lancet, 2015, 386(9991): 369-375.
[15] Gasparrini A, Guo Y, Sera F, et al. Projections of temperature-related excess mortality under climate change scenarios[J]. Lancet Planet Health, 2017, 1(9): e360-e367.
[16] 中国气象局气候变化中心. 中国气候变化蓝皮书(2019)[R]. 北京: 中国气象局气候变化中心, 2020.
[17] Chen RJ, Yin P, Wang LJ, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities[J]. BMJ Clin Res Ed, 2018, 363: k4306. doi: 10.1136/bmj.k4306.
[18] Xu Z, Etzel RA, Su H, et al. Impact of ambient temperature on children's health: a systematic review[J]. Environ Res, 2012, 117:120-131. doi: 10.1016/j.envres.2012.07.002.
[19] Song X, Wang S, Hu Y, et al. Impact of ambient temperature on morbidity and mortality: an overview of reviews[J]. Sci Total Environ, 2017, 586: 241-254. doi:10.1016/j.scitotenv.2017.01.212.
[20] Gronlund CJ, Sullivan KP, Kefelegn Y, et al. Climate change and temperature extremes: a review of heat- and cold-related morbidity and mortality concerns of municipalities[J]. Maturitas, 2018, 114:54-59. doi:10.1016/j.maturitas.2018.06.002.
[21] Cheng J, Xu ZW, Bambrick H, et al. Impacts of exposure to ambient temperature on burden of disease: a systematic review of epidemiological evidence[J]. Int J Biometeorol, 2019, 63(8): 1099-1115.
[22] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990—2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
[23] Gasparrini A, Leone M. Attributable risk from distributed lag models[J]. BMC Med Res Methodol, 2014, 14: 55. doi:10.1186/1471-2288-14-55.
[24] 李立明. 流行病学[M]. 北京: 人民卫生出版社, 2010: 78-80.
[25] 李惠娟, 周德群, 魏永杰. 空气污染的健康经济损失评价研究进展[J]. 环境科学研究, 2020, 33(10): 2421-2429. LI Huijuan, ZHOU Dequn, WEI Yongjie, et al. Review on health economic loss assessment of air pollution[J]. Research of Environmental Sciences, 2020, 33(10): 2421-2429.
[26] Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models[J]. Stat Med, 2010, 29(21): 2224-2234.
[27] 王金娜, 姜宝法. 气候变化相关疾病负担的评估方法[J]. 环境与健康杂志, 2012, 29(3): 280-283. WANG Jinna, JIANG Baofa. Methods for assessment of burden of climate change-related diseases[J]. Journal of Environment and Health, 2012, 29(3): 280-283.
[28] Basagaña X, Sartini C, Barrera-Gómez J, et al. Heat waves and cause-specific mortality at all ages[J]. Epidemiology, 2011, 22(6): 765-772.
[29] Carmona R, Díaz J, Mirón IJ, et al. Mortality attributable to extreme temperatures in Spain: a comparative analysis by city[J]. Environ Int, 2016, 91:22-28. doi:10.1016/j.envint.2016.02.018.
[30] Lee W, Kim Y, Sera F, et al. Projections of excess mortality related to diurnal temperature range under climate change scenarios: a multi-country modelling study[J]. Lancet Planet Health, 2020, 4(11): e512-e521.
[31] Benmarhnia T, Sottile MF, Plante C, et al. Variability in temperature-related mortality projections under climate change[J]. Environ Health Perspect, 2014, 122(12): 1293-1298.
[32] Deng J, Hu X, Xiao C, et al. Ambient temperature and non-accidental mortality: a time series study[J]. Environ Sci Pollut Res Int, 2020, 27(4): 4190-4196.
[33] Liu J, Ma Y, Wang Y, et al. The impact of cold and heat on years of life lost in a Northwestern Chinese City with temperate continental climate[J]. Int J Environ Res Public Health, 2019, 16(19): 3529
[34] Urban A, Kyselý J, Plavcová E, et al. Temporal changes in years of life lost associated with heat waves in the Czech Republic[J]. Sci Total Environ, 2020, 716: 137093. doi:10.1016/j.scitotenv.2020.137093.
[35] Revich B, Shaposhnikov D. Excess mortality during heat waves and cold spells in Moscow, Russia[J]. Occup Environ Med, 2008, 65(10): 691-696.
[36] Fu SH, Gasparrini A, Rodriguez PS, et al. Mortality attributable to hot and cold ambient temperatures in India: a nationally representative case-crossover study[J]. PLoS Med, 2018, 15(7): e1002619.
[37] Baccini M, Kosatsky T, Analitis A, et al. Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios[J]. J Epidemiol Community Heal, 2011, 65(1): 64-70.
[38] Cheng J, Xu Z, Bambrick H, et al. Heatwave and elderly mortality: an evaluation of death burden and health costs considering short-term mortality displacement[J]. Environ Int, 2018, 115: 334-342. doi:10.1016/j.envint.2018.03.041.
[39] Deng C, Ding Z, Li L, et al. Burden of non-accidental mortality attributable to ambient temperatures: a time series study in a high plateau area of southwest China[J]. BMJ Open, 2019, 9(2): e024708.
[40] Huang C, Barnett AG, Wang X, et al. Projecting future heat-related mortality under climate change scenarios: a systematic review[J]. Environ Health Perspect, 2011, 119(12): 1681-1690.
[41] Chung SE, Cheong HK, Park JH, et al. Current and projected burden of disease from high ambient temperature in korea[J]. Epidemiology, 2017, 28(Suppl 1): 98-105.
[42] Odhiambo Sewe M, Bunker A, Ingole V, et al. Estimated effect of temperature on years of life lost: a retrospective time-series study of low-, middle-, and high-income regions[J]. Environ Heal Perspect, 2018, 126(1): 017004.
[43] 李静, 罗书全, 丁贤彬. 重庆市逐日温度对人群死亡及寿命损失年影响的研究[J]. 中华流行病学杂志, 2016, 37(3): 375-380. LI Jing, LUO Shuquan, DING Xianbin, et al. Influence of daily ambient temperature on mortality and years of life lost in Chongqing[J]. Chinese Journal of Epidemiology, 2016, 37(3): 375-380.
[44] Chen S, Xiao Y, Zhou M, et al. Comparison of life loss per death attributable to ambient temperature among various development regions: a nationwide study in 364 locations in China[J]. Environ Health, 2020, 19(1): 98.
[45] 李志浩, 许燕君, 林国桢. 广州和珠海市气温对居民寿命损失年影响的时间序列分析[J]. 中华流行病学杂志, 2015, 36(7): 720-724. LI Zhihao, XU Yanjun, LIN Guozhen. Impact of air temperature on years of life lost among residents in Guangzhou and Zhuhai: a time-series study[J]. Chinese Journal of Epidemiology, 2015, 36(7): 720-724.
[46] Li T, Horton RM, Bader DA, et al. Aging will amplify the heat-related mortality risk under a changing climate: projection for the elderly in Beijing, China[J]. Sci Rep, 2016, 6: 28161. doi:10.1038/srep28161.
[47] Yoon SJ, Oh IH, Seo HY, et al. Measuring the burden of disease due to climate change and developing a forecast model in South Korea[J]. Public Health, 2014, 128(8): 725-733.
[48] Petkova EP, Vink JK, Horton RM, et al. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios[J]. Environ Heal Perspect, 2017, 125(1): 47-55.
[49] Kim DW, Deo RC, Chung JH, et al. Projection of heat wave mortality related to climate change in Korea[J]. Nat Hazards, 2016, 80(1): 623-637.
[50] Gosling SN, Hondula DM, Bunker A, et al. Adaptation to climate change: a comparative analysis of modeling methods for heat-related mrtality[J]. Environ Health Perspect, 2017, 125(8): 087008.
[51] Liu Y, Saha S, Hoppe BO, et al. Degrees and dollars-Health costs associated with suboptimal ambient temperature exposure[J]. Sci Total Environ, 2019, 678: 702-711. doi: 10.1016/j.scitotenv.2019.04.398.
[52] 李湉湉, 杜宗豪, 程艳丽. 气候变化下热浪对人群健康的风险及健康经济损失预估研究进展[J]. 中华预防医学杂志, 2014, 48(9): 845-848
[53] Dunne JP, Stouffer RJ, John JG. Reductions in labour capacity from heat stress under climate warming[J]. Nat Clim Chang, 2013, 3(6): 563-566.
[54] Huang C, Barnett AG, Wang X, et al. The impact of temperature on years of life lost in Brisbane, Australia[J]. Nature Climate Change, 2012, 2(4): 265-270.
[55] Lee W, Kim Y, Honda Y, et al. Association between diurnal temperature range and mortality modified by temperature in Japan, 1972-2015: Investigation of spatial and temporal patterns for 12 cause-specific deaths[J]. Environ Int, 2018, 119: 379-387.
[56] Lee W, Chung Y, Michelle Choi H, et al. Interactive effect of diurnal temperature range and temperature on mortality, northeast asia[J]. Epidemiol Camb Mass, 2019, 30(Suppl 1): S99-S106.
[57] 李湉湉, 杜艳君, 莫杨. 基于脆弱性的高温热浪人群健康风险评估研究进展[J]. 环境与健康杂志, 2014, 31(6): 547-550. LI Tiantian, DU Yanjun, MO Yang. Human health risk assessment of heat wave based on vulnerability: a review of recent studies[J]. Journal of Environment and Health, 2014, 31(6): 547-550.
[58] Hajat S, Vardoulakis S, Heaviside C, et al.Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s[J]. J Epidemiol Community Health, 2014, 68(7): 641-648.
[59] Vardoulakis S, Dear K, Hajat S, et al. Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia[J]. Environ Health Perspect, 2014, 122(12): 1285-1292.
[60] Oudin Åström D, Ebi KL, Vicedo-Cabrera AM, et al. Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden[J]. Int J Biometeorol, 2018, 62(9): 1777-1780.
[61] deDonato F, Scortichini M, De Sario M, et al. Temporal variation in the effect of heat and the role of the Italian heat prevention plan[J]. Public Health, 2018, 161: 154-162. doi: 10.1016/j.puhe.2018.03.030.
[62] Lee W, Choi HM, Kim D, et al. Temporal changes in morality attributed to heat extremes for 57 cities in Northeast Asia[J]. Sci Total Environ, 2018, 616/617: 703-709. doi:10.1016/j.scitotenv.2017.10.258.
[63] Hajat S, Vardoulakis S, Heaviside C, et al. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s[J]. J Epidemiol Community Health, 2014, 68(7): 641-648.
[64] Xia Y, Li Y, Guan D, et al. Assessment of the economic impacts of heat waves: a case study of Nanjing, China[J]. J Clean Prod, 2018, 171: 811-819.doi: 10.1016/j.jclepro.2017.10.069.
[65] 中华人民共和国生态环境部. 2020中国生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2021.
[66] Lu P, Xia G, Zhao Q, et al. Temporal trends of the association between ambient temperature and hospitalisations for cardiovascular diseases in Queensland, Australia from 1995 to 2016: a time-stratified case-crossover study[J]. PLoS Med, 2020, 17(7): e1003176.
[67] Wang Y, Wang A, Zhai J, et al. Tens of thousands additional deaths annually in cities of China between 1.5 ℃ and 2.0 ℃ warming[J]. Nat Commun, 2019, 10(1): 3376.
[68] Yao M, Wu G, Zhao X, et al. Estimating health burden and economic loss attributable to short-term exposure to multiple air pollutants in China[J]. Environ Res, 2020, 183: 109184. doi:10.1016/j.envres.2020.109184.
[1] 刘盈,杨淑霞,佘凯丽,程传龙,房启迪,韩闯,崔峰,李秀君. 2019年山东省淄博市居民死因及疾病负担探析[J]. 山东大学学报 (医学版), 2022, 60(6): 114-121.
[2] 杜爽,韩德新,林少倩,白硕鑫,赵小冬,王兆军,王志萍. 孕期环境温度对早产风险的影响[J]. 山东大学学报 (医学版), 2021, 59(12): 134-142.
[3] 石婉荧,班婕,杜宗豪,王琼,刘霞,姜超,韩联宇,王锐,崔亮亮. 济南市三城区居民热浪健康风险感知水平及影响因素[J]. 山东大学学报 (医学版), 2019, 57(1): 107-113.
[4] 刘言玉,刘志东,劳家辉,张静,姜宝法. 南宁市2008~2011年气象因素对手足口病的影响及其交互作用[J]. 山东大学学报 (医学版), 2018, 56(8): 95-100.
[5] 许勤勤,李润滋,刘娅飞,孙苑潆,郑兆磊,王珮竹,王志强,李秀君. 基于分布滞后非线性模型的青岛市温度与肾综合征出血热的剂量反应关系[J]. 山东大学学报 (医学版), 2018, 56(1): 90-96.
[6] 康凤玲,丁荔洁,柳晓涓,周苗,薛付忠. 多中心健康管理人群心脑血管疾病负担分析[J]. 山东大学学报 (医学版), 2017, 55(12): 51-55.
[7] 谢海,李艳,周期. 腹横肌平面阻滞区皮肤温度变化对阻滞效果的评估[J]. 山东大学学报(医学版), 2016, 54(1): 71-74.
[8] 于绍轶, 陈远银, 刘海韵, 曲淑娜, 徐颖, 王倩倩, 王茂波. 应用DALYs评价烟台市恶性肿瘤疾病负担[J]. 山东大学学报(医学版), 2015, 53(8): 92-96.
[9] 潘黎静,戴燕燕. 甲状腺冰冻切片制作方法的探讨[J]. 山东大学学报(医学版), 2014, 52(5): 100-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[2] 张杰,李振华,孙晋浩,暴丽华,刘岳鹏. 恒定磁场对Schwann细胞氧化损伤的保护作用[J]. 山东大学学报(医学版), 2007, 45(3): 229 -232 .
[3] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .
[4] 滕学仁,赵永生,胡光亮,周伦,李建民 . 两种方法保存同种异体髌腱移植重建膝关节交叉韧带的光镜电镜观察[J]. 山东大学学报(医学版), 2008, 46(10): 945 -950 .
[5] 袁吴敏,赵志伦,王洁贞 . 吸烟和饮酒与颅内肿瘤关系的Meta分析[J]. 山东大学学报(医学版), 2006, 44(11): 1146 -1149 .
[6] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .
[7] . Graves病131治疗后1年内早发甲减影响因素分析[J]. 山东大学学报(医学版), 2009, 47(9): 5 -6 .
[8] 牛瑞,刘波,邵明举,王伟 . 非小细胞肺癌区域淋巴结中肺组织特异性基因的表达与预后的关系[J]. 山东大学学报(医学版), 2007, 45(9): 884 -885 .
[9] 焦芳芳,刘世青,李飞,李长生,王琴,孙青,鹿伟 . 化瘀理肺方对大鼠肺间质纤维化时Smad7和TGF-β表达的影响[J]. 山东大学学报(医学版), 2007, 45(10): 1054 -1058 .
[10] 赵瑛,颜磊,张辉,于鹏,李明江,赵兴波. 精子相关抗原9在卵巢浆液性上皮肿瘤中的表达[J]. 山东大学学报(医学版), 2012, 50(2): 98 .