山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (8): 44-52.doi: 10.6040/j.issn.1671-7554.0.2021.0228
孟婷婷,王淑亚,吴会会,陈嘉敏,郑燕,李莹,苏国海
MENG Tingting, WANG Shuya, WU Huihui, CHEN Jiamin, ZHENG Yan, LI Ying, SU Guohai
摘要: 目的 探讨脂联素(APN)通过调控分泌型卷曲相关蛋白2(SFRP2)及相关通路对血管紧张素Ⅱ(AngⅡ)诱导的心肌肥厚的作用及机制。 方法 出生3d Wistar大鼠中分离出原代心室肌细胞(NRVMs)。采用免疫荧光法检测NRVMs的骨架蛋白α-SMA的表达。将提取的NRVMs分为空白组、1 nmol/L组、10 nmol/L组、100 nmol/L组、500 nmol/L组,检测不同浓度AngⅡ对NRVMs的作用。将NRVMs分为空白组、AngⅡ组、APN+AngⅡ组、AngⅡ+APN+si-sFRP2组、AngⅡ+APN+LiCl组、APN组、SP600125+AngⅡ组以及SB203580+AngⅡ组检测APN对AngⅡ作用的影响。采用Western blotting法检测各组细胞sFRP2的表达量以及Wnt/β-catenin、p38/JNK通路的激活。采用qPCR法检测各组细胞心肌肥厚相关指标以及sFRP2的表达水平。 结果 在NRVMs中加入AngⅡ24 h后,与空白组相比,1 nmol/L组、10 nmol/L组、100 nmol/L组、500 nmol/L组ANP、BNP的表达升高(FANP=27.30, P=0.002;FBNP=38.18, P=0.002),p-JNK和p-p38表达均升高(Fp-JNK=57.65,P<0.001; Fp-p38 =8.880,P=0.018),sFRP2的表达下调(FAngⅡ=47.53,P<0.001)。加入APN预处理1 h后,与单加AngⅡ组相比,APN+AngⅡ组NRVMs心功能损伤标志物ANP、BNP的表达降低(FANP=101.8,P<0.001;FBNP=51.14,P<0.001),sFRP2的含量上调(F=88.93,P<0.001),同时Wnt/β-catenin(F=41.33,P=0.006)及p38/JNK(Fp38=73.42,P<0.001;FJNK=39.28,P=0.002)通路的激活被抑制。加入p38/JNK通路抑制剂后,能够达到APN预处理的效果(FANP=122.9, P<0.001; FBNP= 202.3, P<0.001)。 结论 APN可能通过上调sFRP2,抑制Wnt/β-catenin、p38/JNK通路的激活,从而抑制AngⅡ诱导的心肌肥厚。
中图分类号:
[1] Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players[J]. Nat Rev Mol Cell Biol, 2013, 14(1): 38-48. [2] Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling[J]. J Am Coll Cardiol, 2000, 35(3): 569-582. [3] Dorn GW. The fuzzy logic of physiological cardiac hypertrophy[J]. Hypertension, 2007, 49(5): 962-970. [4] Hirt MN, Sörensen NA, Bartholdt LM, et al. Increased afterload induces pathological cardiac hypertrophy: a new in vitro model[J]. Basic Res Cardiol, 2012, 107(6): 307. [5] 刘梦迪, 张连峰, 吕丹. 心肌肥厚动物模型及代偿机制研究进展[J]. 中国比较医学杂志, 2020, 30(8): 102-106. LIU Mengdi, ZHANG Lianfeng, LYU Dan. Research progress on animal models of cardiac hypertrophy and compensation mechanisms[J]. Chinese Journal of Comparative Medicine, 2020, 8(30): 102-106. [6] 薛周铭, 李静, 梁雪琦, 等. 心肌肥厚信号转导途径的研究进展[J]. 医学综述, 2021, 27(1): 29-35. XUE Zhouming, LI Jing, LIANG Xueqi, et al. Research progress on myocardial hypertrophy signal transduction pathways[J]. Medical Synopsis, 2021, 1(27): 29-35. [7] Sabbah HN. Silent disease progression in clinically stable heart failure[J]. Eur J Heart Fail, 2017, 19(4): 469-478. [8] Michels M, Olivotto I, Asselbergs FW, et al. Life-long tailoring of management for patients with hypertrophic cardiomyopathy: awareness and decision-making in changing scenarios[J]. Neth Heart J, 2017, 25(3): 186-199. [9] Watanabe H, Yokosawa T, Eguchi S, et al. Functional and metabolic protection of the neonatal myocardium from ischemia. Insufficient protection by cardioplegia[J]. J Thorac Cardiovasc Surg, 1989, 97(1): 50-58. [10] Wang L, Zhang YL, Lin QY, et al. CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration[J]. Eur Heart J, 2018, 39(20): 1818-1831. [11] Zhou LC, Ma BH, Han XZ. The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy[J]. J Mol Endocrinol, 2016, 57(4): R143-R152. [12] Li H, Yao W, Irwin MG, et al. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1[J]. Free Radic Biol Med, 2015, 84: 311-321. doi:10.1016/j.freeradbiomed.2015.03.007. [13] Jian M, Kwan JS, Bunting M, et al. Adiponectin suppresses amyloid-β oligomer(AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling pathway[J]. J Neuroinflammation, 2019, 16(1): 110. [14] Li Y, Cai X, Guan Y, et al. Adiponectin upregulates MiR-133a in cardiac hypertrophy through AMPK activation and reduced ERK1/2 phosphorylation[J]. PLoS One, 2016, 11(2): e0148482. [15] Wei WY, Zhao Q, Zhang WZ, et al. Secreted frizzled-related protein 2 prevents pressure-overload-induced cardiac hypertrophy by targeting the Wnt/β-catenin pathway[J]. Mol Cell Biochem, 2020, 472(1/2): 241-251. [16] Lin H, Angeli M, Chung KJ, et al. sFRP2 activates Wnt/β-catenin signaling in cardiac fibroblasts: differential roles in cell growth, energy metabolism, and extracellular matrix remodeling[J]. Am J Physiol Cell Physiol, 2016, 311(5): C710-C719. [17] Li CB, Li XX, Chen YG, et al. Effects and mechanisms of PPARalpha activator fenofibrate on myocardial remodelling in hypertension[J]. J Cell Mol Med, 2009, 13(11/12): 4444-4452. [18] Li Y, Ma HL, Han L, et al. Novel ferrocenyl derivatives exert anti-cancer effect in human lung cancer cells in vitro via inducing G1-phase arrest and senescence[J]. Acta Pharmacol Sin, 2013, 34(7): 960-968. [19] Wang SY, Ni X, Hu KQ, et al. Cilostazol alleviate nicotine induced cardiomyocytes hypertrophy through modulation of autophagy by CTSB/ROS/p38MAPK/JNK feedback loop[J]. Int J Biol Sci, 2020, 16(11): 2001-2013. [20] Amin JK, Xiao L, Pimental DR, et al. Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes[J]. J Mol Cell Cardiol, 2001, 33(1): 131-139. [21] Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II[J]. Circulation, 1998, 98(8): 794-799. [22] Zhang Z, Deb A, Zhang Z, et al. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a[J]. J Mol Cell Cardiol, 2009, 46(3): 370-377. [23] Hao K, Lei W, Wu H, et al. LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction[J]. Theranostics, 2019, 9(24): 7282-7297. [24] Ni J, Liu X, Yin Y, et al. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway[J]. Oxid Med Cell Longev, 2019, 2019: 1958941. doi:10.1155/2019/1958941. [25] Yang S, Chen H, Tan K, et al. Secreted frizzled-related protein 2 and extracellular volume fraction in patients with heart failure[J]. Oxid Med Cell Longev, 2020, 2020: 2563508. doi:10.1155/2020/2563508. [26] Wang X, Li W, Yue Q, et al. C-C chemokine receptor 5 signaling contributes to cardiac remodeling and dysfunction under pressure overload[J]. Mol Med Rep, 2021, 23(1): 49. [27] Wu Y, Quan C, Yang Y, et al. Renalase improves pressure overload-induced heart failure in rats by regulating extracellular signal-regulated protein kinase 1/2 signaling[J]. Hypertens Res, 2021, 44(5): 481-488. [28] Luo D, Chen P, Yang Z, et al. High plasma adiponectin is associated with increased pulmonary blood flow and reduced right ventricular function in patients with pulmonary hypertension[J]. BMC Pulm Med, 2020, 20(1): 204. [29] George J, Patal S, Wexler D, et al. Circulating adiponectin concentrations in patients with congestive heart failure[J]. Heart, 2006, 92(10): 1420-1424. [30] Zhang JC, Zhang WJ, Zhao Q, et al. Adiponectin improves isoflurane-induced cognitive dysfunction in elderly rats via inhibiting p38-MAPK signal pathway in Hippocampus[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3 Suppl): 171-176. [31] Liu H, Wu X, Luo J, et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β[J]. Exp Neurol, 2020, 329: 113302. doi: 10.1016/j.expneurol.2020.113302. [32] Han XT, Wang YY, Fu MQ, et al. Effects of adiponectin on diastolic function in mice underwent transverse aorta constriction[J]. J Cardiovasc Transl Res, 2020, 13(2): 225-237. |
[1] | 张媛 李英敏 冯月秋 常彩云 潘华伟 王束玫. 血清脂联素水平与肥胖、胰岛素抵抗的关系探讨[J]. 山东大学学报(医学版), 2209, 47(6): 124-. |
[2] | 赵位昆,吕祥威,武琦,鲁攀,彭丽,覃秋语. 6-姜酚减轻血管紧张素Ⅱ诱导的大鼠心房纤维化[J]. 山东大学学报 (医学版), 2020, 58(2): 1-6. |
[3] | 孙红林,韩波,王静,高聆,朱梅,姜殿东,吕建利. CD40siRNA调控c-Jun氨基末端激酶对自身免疫性心肌炎大鼠心肌细胞自噬的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 9-14. |
[4] | 麻贞贞,孙红胜,杨清锐. 脂联素、内脂素、抵抗素在系统性红斑狼疮患者血清中的变化及临床意义[J]. 山东大学学报(医学版), 2017, 55(4): 86-90. |
[5] | 贾佳静,王志萍. 育龄期高水平生殖激素对大鼠围绝经期及绝经后血压的影响[J]. 山东大学学报(医学版), 2017, 55(11): 7-14. |
[6] | 姜蕾, 张磊, 梁江久. 长链非编码RNA在压力超负荷引起的大鼠心肌肥厚中的差异表达[J]. 山东大学学报(医学版), 2015, 53(5): 21-26. |
[7] | 刘雷雷, 鞠云飞, 许文飞, 鞠远荣. 氯沙坦对大鼠内毒素性急性肺损伤的影响及可能机制[J]. 山东大学学报(医学版), 2015, 53(2): 6-11. |
[8] | 王光亚, 郭宁宁, 赵乃蕊, 李瑞杰, 高书明. 脂联素水平在2型糖尿病和甲状腺疾病中的变化及意义[J]. 山东大学学报(医学版), 2014, 52(S1): 96-97. |
[9] | 刘天骄, 郭媛, 李婷婷, 张建宁, 李俊, 张鹏. 血清CTRP9、APN水平与急性冠脉综合征的相关性[J]. 山东大学学报(医学版), 2014, 52(9): 58-62. |
[10] | 刘文辉, 李晓玲, 袁萍, 栾荣生, 冯斐, 胡晓琴, 燕锦, 杨艳芳. 脂联素基因和钙蛋白酶10基因多态性与结直肠癌发生风险的关系[J]. 山东大学学报(医学版), 2014, 52(11): 106-112. |
[11] | 何俊峰1,刘俊2,王伟人3,张青峰1,杨琼芬1,李光友1,周林1,李志梅1,李佩珍1. 贵州省神经管畸形影响因素的病例对照研究[J]. 山东大学学报(医学版), 2013, 51(7): 50-53. |
[12] | 杨艳1,阎春英1,陈旭2,林晓燕3,王来城4,石军1. 氯沙坦对实验性肝纤维化模型大鼠的作用[J]. 山东大学学报(医学版), 2013, 51(3): 27-31. |
[13] | 陆冠延1,崔彬2,刘忠良3,李玉瑭4,刘雪飞3,马晓静1,朱贵月1,苑海涛1. 缬沙坦对慢性病毒性心肌炎小鼠Th17/Treg免疫平衡的影响[J]. 山东大学学报(医学版), 2013, 51(2): 1-. |
[14] | 张娜娜1,王立祥1,曾季平2,魏欣冰1,曹敏敏1,刘慧青1,孙霞1,张岫美1. Ang Ⅱ诱导大鼠原代海马神经细胞衰老的作用及机制[J]. 山东大学学报(医学版), 2013, 51(2): 17-21. |
[15] | 季恩飞1,刘学文2. p38MAPK信号通路抑制剂对NMDA诱导的体外培养的皮层神经元损伤的保护作用及机制[J]. 山东大学学报(医学版), 2013, 51(11): 10-15. |
|