山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (8): 8-13.doi: 10.6040/j.issn.1671-7554.0.2021.0958
单婧,王晓秋,李大金
SHAN Jing, WANG Xiaoqiu, LI Dajin
摘要: NK细胞作为机体免疫系统的第一道防线,参与多种自身免疫性疾病、感染性疾病以及肿瘤等疾病的发生发展。不同活化状态的NK细胞具有不同的免疫效应,与疾病的转归密切相关。子宫内膜异位症(EMS)是一种常见的妇科疾病,虽为良性病变,但子宫内膜异位种植生长的特性与肿瘤相似,且受损的在位子宫内膜与胚胎着床失败相关,是EMS相关不孕的重要病因。虽然目前已明确异位灶微环境免疫失调是促进异位灶种植生长的重要因素,且NK细胞是异位灶异常免疫微环境形成的关键细胞,但深入的致病机制及其在位子宫内膜损伤的分子机制仍然知之甚少。本文梳理了近年来NK细胞参与EMS发病的相关研究,以期更好地理解EMS及EMS相关不孕的发病机制,为EMS的防治及EMS相关不孕的诊治提供新思路。
中图分类号:
[1] Bulun SE. Mechanisms of disease endometriosis [J]. N Engl J Med, 2009, 360(3): 268-279. [2] Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis [J]. Fertil Steril, 2012, 98(3): 511-519. [3] Kyama C, Debrock S, Mwenda JM, et al. Potential involvement of the immune system in the development of endometriosis [J]. Reprod Biol Endocrin, 2003, 1: 123. doi:10.1186/1477-7827-1-123. [4] Hassa H, Tanir HM, Tekin B, et al. Cytokine and immune cell levels in peritoneal fluid and peripheral blood of women with early- and late-staged endometriosis [J]. Arch Gynecol Obstet, 2009, 279(6): 891-895. [5] Nothnick WB. Treating endometriosis as an autoimmune disease [J]. Fertil Steril, 2001, 76(2): 223-231. [6] Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells [J]. Nat Immunol, 2008, 9(5): 503-510. [7] Caligiuri MA. Human natural killer cells [J]. Blood, 2008, 112(3): 461-469. [8] Chou YC, Chen CH, Chen MJ, et al. Killer cell immunoglobulin-like receptors(KIR)and human leukocyte antigen-C(HLA-C)allorecognition patterns in women with endometriosis [J]. Sci Rep, 2020, 10(1): 4897. doi:10.1038/s41598-020-61702-y. [9] Dias JA, Podgaec S, de Oliveira RM, et al. Patients with endometriosis of the rectosigmoid have a higher percentage of natural killer cells in peripheral blood [J]. J Minim Invasive Gynecol, 2012, 19(3): 317-324. [10] Mei J, Zhou WJ, Zhu XY, et al. Suppression of autophagy and HCK signaling promotes PTGS2(high)FCGR3(-)NK cell differentiation triggered by ectopic endometrial stromal cells [J]. Autophagy, 2018, 14(8): 1376-1397. [11] Maeda N, Izumiya C, Yamamoto Y, et al. Increased killer inhibitory receptor KIR2DL1 expression among natural killer cells in women with pelvic endometriosis [J]. Fertil Steril, 2002, 77(2): 297-302. [12] Xu H. Expressions of natural cytotoxicity receptor, NKG2D and NKG2D ligands in endometriosis [J]. J Reprod Immunol, 2019, 136: 102615. doi:10.1016/j.jri.2019.102615. [13] Funamizu A, Fukui A, Kamoi M, et al. Expression of natural cytotoxicity receptors on peritoneal fluid natural killer cell and cytokine production by peritoneal fluid natural killer cell in women with endometriosis [J]. Am J Reprod Immunol, 2014, 71(4): 359-367. [14] Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways [J]. Science, 2004, 306(5701): 1517-1519. [15] Marçais A, Marotel M, Degouve S, et al. High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors [J]. Elife, 2017, 6: 264. doi:10.7554/eLife.26423. [16] Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer(NK)cells in antibacterial innate immunity: angels or devils? [J]. Mol Med, 2012, 18: 270-285. doi:10.2119/molmed.2011.00201. [17] Viel S, Marçais A, Guimaraes F, et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway [J]. Sci Signal, 2016, 9(415): ra19. doi:10.1126/scisignal.aad1884. [18] Oosterlynck DJ, Meuleman C, Waer M, et al. Immunosuppressive activity of peritoneal fluid in women with endometriosis [J]. Obstet Gynecol, 1993, 82(2): 206-212. [19] Yang HL, Zhou WJ, Chang KK, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-beta [J]. Reproduction, 2017, 154(6): 815-825. [20] Guo SW, Du Y, Liu X. Platelet-derived TGF-beta1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer(NK)cytotoxicity in women with endometriosis [J]. Hum Reprod, 2016, 31(7): 1462-1474. [21] Kang YJ, Jeung IC, Park A, et al. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression [J]. Hum Reprod, 2014, 29(10): 2176-2189. [22] Zhang B, Zhou WJ, Gu CJ, et al. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity [J]. Cell Death Dis, 2018, 9(5): 574. [23] Terren I, Orrantia A, Vitalle J, et al. NK cell metabolism and tumor microenvironment [J]. Front Immunol, 2019, 10: 2278. doi:10.3389/fimmu.2019.02278. [24] Parodi M, Raggi F, Cangelosi D, et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory Profile, and Influences NK Cell Subset Migration [J]. Front Immunol, 2018, 9: 2358. doi:10.3389/fimmu.2018.02358. [25] Assmann N, O'brien KL, Donnelly RP, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses [J]. Nat Immunol, 2017, 18(11): 1197-1206. [26] Simopoulou M, Rapani A, Grigoriadis S, et al. Getting to know endometriosis-related infertility better: a review on how endometriosis affects oocyte quality and embryo development [J]. Biomedicines, 2021, 9(3): 273. [27] Indra DH, Diana A, Antonio GVJ, et al. Uterine natural killer cells: from foe to friend in reproduction [J]. Hum Reprod Update, 2021, 27(4): 720-746. [28] Huhn O, Zhao XH, Esposito L, et al. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy? [J]. Front Immunol, 2021, 12: 607669. doi:10.3389/fimmu.2021.607669. [29] Fu BQ, Zhou YG, Ni X, et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors[J]. Immunity, 2017, 47(6):1100-1113. [30] Matsubayashi H, Hosaka T, Sugiyama Y, et al. Increased natural killer-cell activity is associated with infertile women [J]. Am J Reprod Immunol, 2001, 46(5): 318-322. [31] Giuliani E, Parkin KL, Lessey BA, et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis [J]. Am J Reprod Immunol, 2014, 72(3): 262-269. [32] Junovich G, Azpiroz A, Incera E, et al. Endometrial CD16(+)and CD16(-)NK cell count in fertility and unexplained infertility [J]. Am J Reprod Immunol, 2013, 70(3): 182-189. [33] Drury JA, Parkin KL, Coyne L, et al. The dynamic changes in the number of uterine natural killer cells are specific to the eutopic but not to the ectopic endometrium in women and in a baboon model of endometriosis [J]. Reprod Biol Endocrin, 2018, 16(1): 67. [34] Takeyama R, Fukui A, Mai C, et al. Co-expression of NKp46 with activating or inhibitory receptors on, and cytokine production by, uterine endometrial NK cells in recurrent pregnancy loss [J]. J Reprod Immunol, 2021, 145: 103324.doi:10.1016/j.jri.2021.103324. [35] Fukui A, Funamizu A, Yokota M, et al. Uterine and circulating natural killer cells and their roles in women with recurrent pregnancy loss, implantation failure and preeclampsia [J]. J Reprod Immunol, 2011, 90(1): 105-110. [36] Kotlyar A, Taylor HS, D'Hooghe TM. Use of immunomodulators to treat endometriosis [J]. Best Pract Res Clin Obstet Gynaecol, 2019, 60: 56-65.doi:10.1016/j.bpobgyn.2019.06.006. [37] Velasco I, Quereda F, Bermejo R, et al. Intraperitoneal recombinant interleukin-2 activates leukocytes in rat endometriosis [J]. J Reprod Immunol, 2007, 74(1-2): 124-132. [38] Acien P, Velasco I, Acien M, et al. Treatment of endometriosis with transvaginal ultrasound-guided drainage and recombinant interleukin-2 left in the cysts: a third clinical trial [J]. Gynecol Obstet Invest, 2010, 69(3): 203-211. [39] Ata B, Tan SL, Shehata F, et al. A systematic review of intravenous immunoglobulin for treatment of unexplained recurrent miscarriage [J]. Fertil Steril, 2011, 95(3): 1080-U296. [40] Roussev RG, Ng SC, Coulam CB. Natural killer cell functional activity suppression by intravenous immunoglobulin, intralipid and soluble human leukocyte antigen-G[J]. Am J Reprod Immunol, 2007, 57(4): 262-269. |
[1] | 颜磊,岳彩欣,刘懿淳. 子宫内膜异位症的生育力保护[J]. 山东大学学报 (医学版), 2022, 60(9): 31-34. |
[2] | 颜磊,陈子江. 子宫腺肌病合并不孕的治疗[J]. 山东大学学报 (医学版), 2022, 60(7): 43-47. |
[3] | 冷金花,史精华. 子宫腺肌病的临床表现[J]. 山东大学学报 (医学版), 2022, 60(7): 1-5. |
[4] | 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45. |
[5] | 陈忠绍,褚然,李明宝,张向宁. MRKH综合征相关腹股沟子宫疝修补术后腹壁瘢痕子宫内膜异位症1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(5): 114-117. |
[6] | 李涛,杨春林,杜通,李亨,王聪聪,李晓丽,段瑞生,张蓬. 糖尿病对重症肌无力NK细胞亚型及功能的影响[J]. 山东大学学报 (医学版), 2022, 60(5): 31-36. |
[7] | 林雪艳,张灿灿,田民乐,田永杰. 聚腺苷酸二磷酸核糖聚合酶-1在子宫内膜异位症中的表达及意义[J]. 山东大学学报 (医学版), 2022, 60(2): 27-31. |
[8] | 梁炎春,叶海花,陆丽美,戴郁菁,程谦益,蔡婉玲,曾涵秋,陈杏欢,王兴,韦雅婧,杨如玉. 慢性子宫内膜炎对子宫内膜异位症相关性不孕妊娠结局的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 55-59. |
[9] | 白璐,张雨青,房玉英. 正念在不孕症患者生育压力与创伤后应激障碍间的中介及调节作用[J]. 山东大学学报 (医学版), 2021, 59(2): 83-87. |
[10] | 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47. |
[11] | 潘虹江,王焕昇,裴发军,杨明山. 孤立性膀胱子宫内膜异位症1例[J]. 山东大学学报 (医学版), 2021, 59(2): 122-124. |
[12] | 韩晓婷,于霞,董来慧,纳莉,牛艳玲,赵君利. 月见草油对肥胖型不孕女性代谢及肠道菌群的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 48-54. |
[13] | 李湘青,殷欣,赵雪莲,赵培庆. NK细胞亚群CD56bright在帕金森患者外周血中的表达及临床意义[J]. 山东大学学报 (医学版), 2021, 59(2): 34-40. |
[14] | 王国云,王凯,袁明,陈子江. 子宫内膜异位症立体化管理体系(山东方案)[J]. 山东大学学报 (医学版), 2021, 59(10): 1-16. |
[15] | 樊安彤, 田庆, 李欣阳, 赵新平, 刘洪庆. 女性不孕症患者心理健康状况及其影响因素分析[J]. 山东大学学报 (医学版), 2020, 58(1): 106-111. |
|