您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 28-33.doi: 10.6040/j.issn.1671-7554.0.2020.1012

• 脑科学与类脑智能研究专题 • 上一篇    下一篇

4D数字脑图谱的构建、不对称性及遗传倾向

刘树伟1,2,*(),娄云霞1,2,汤煜春1,2   

  1. 1. 山东大学齐鲁医学院断层影像解剖学研究中心, 山东大学基础医学院, 山东大学数字人研究院,山东 济南 250012
    2. 山东大学脑与类脑科学研究院,山东 济南 250012
  • 收稿日期:2020-06-24 出版日期:2020-08-07 发布日期:2020-08-07
  • 通讯作者: 刘树伟 E-mail:liusw@sdu.edu.cn
  • 作者简介:刘树伟,医学博士,山东大学特聘教授,博士研究生导师。现任山东大学基础医学院神经科学中心主任、山东大学数字人研究院院长、山东大学脑与类脑科学研究院副院长,曾任山东大学研究生院常务副院长、医学院副院长,兼任亚洲临床解剖学会副主席、中国解剖学会副理事长和断层影像解剖学分会主任委员等职。获卫生部有突出贡献的中青年专家和山东省教学名师称号,享受国务院政府特殊津贴|潜心断层影像解剖学、数字人体、数字脑图谱和胎儿脑发育研究,承担国家及省部级课题20余项,在《Cerebral Cortex》《Radiology》《NeuroImage》等期刊发表论文300余篇(其中SCI收录70余篇),主编《人体断层解剖学》《临床中枢神经解剖学》《功能神经影像学》等著作34部,获省部级科技进步奖4项(其中一等奖1项)。长期从事人体解剖学教学,创建了断层解剖学课程和数字解剖学教学体系,获国家级教学成果奖二等奖2项,主编《断层解剖学》和《局部解剖学》全国规划教材,主译了世界解剖学名著《格氏解剖学》(第41版)
  • 基金资助:
    国家自然科学基金(81371533);国家自然科学基金(31771328);山东省重点研发计划(2017CXGC1501)

The construction, asymmetry and genetic correlation of 4D digital brain atlas

Shuwei LIU1,2,*(),Yunxia LOU1,2,Yuchun TANG1,2   

  1. 1. Research Center for Sectional and Imaging Anatomy, Cheeloo College of Medicine, Shandong University, School of Basic Medical Sciences, Shandong University, Digital Human Institute, Shandong University, Jinan 250012, Shandong, China
    2. Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
  • Received:2020-06-24 Online:2020-08-07 Published:2020-08-07
  • Contact: Shuwei LIU E-mail:liusw@sdu.edu.cn

摘要:

人脑图谱是研究大脑结构和功能的基本工具,是进行脑结构和功能信息分析处理的重要手段。构建不同年龄段、不同性别、不同颅脑分型的标准化4D脑图谱,并利用计算机技术进行可视化和大脑结构的动态分析,可以为人脑结构和功能的发育及发展变化提供详实的形态学基础。概述4D数字脑图谱的构建、不对称性及其遗传倾向,并对未来的研究方向进行展望。

关键词: 数字化, 脑图谱, 脑模板, 不对称性, 遗传倾向

Abstract:

Human Brain Mapping is an important tool for exploring the structure and function of human brains, and is the basic platform for analyzing and processing brain structure and function information. The establishment of standardized 4D brain maps of different ages, genders and brain types, and the use of computer technology for visualization and dynamic analysis of brain structure can provide a detailed morphological basis for the embryogenesis and development of human brain structure and function. In this review, we present recent studies regarding the construction, asymmetry and genetic correlation of 4D digital brain atlas. Finally, discussions on the future research directions of brain atlas are given.

Key words: Digital, Brain atlas, Brain template, Asymmetry, Genetic correlation

中图分类号: 

  • R338.1
1 Amunts K , Knoll AC , Lippert T , et al. The Human Brain Project-Synergy between neuroscience, computing, informatics, and brain-inspired technologies[J]. PLoS Biol, 2019, 17 (7): e3000344.
doi: 10.1371/journal.pbio.3000344
2 Bjerke IE , Ovsthus M , Papp EA , et al. Data integration through brain atlasing: Human Brain Project tools and strategies[J]. Eur Psychiat, 2018, 50: 70- 76.
doi: 10.1016/j.eurpsy
3 Ewert S , Plettig P , Li NF , et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity[J]. Neuroimage, 2018, 170: 271- 282.
doi: 10.1016/j.neuroimage.2017.05.015
4 Oishi K , Chang LD , Huang H . Baby brain atlases[J]. Neuroimage, 2019, 185: 865- 880.
doi: 10.1016/j.neuroimage.2018.04.003
5 Kawasaki T , Shin M , Kimura Y , et al. Topographic anatomy of the subthalamic nucleus localized by high-resolution human brain atlas superimposing digital images of cross-sectioned surfaces and histological images of microscopic sections from frozen cadaveric brains[J]. J Clin Neurosci, 2018, 53: 193- 202.
doi: 10.1016/j.jocn
6 Sivaswamy J , Thottupattu AJ , Mehta R , et al. Construction of Indian human brain atlas[J]. Neurol India, 2019, 67 (1): 229- 234.
7 Zhang YY , Wei HJ , Cronin MJ , et al. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping[J]. Neuroimage, 2018, 171: 176- 189.
doi: 10.1016/j.neuroimage.2018.01.008
8 Mazziotta JC , Toga AW , Evans A , et al. A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)[J]. Neuroimage, 1995, 2 (2): 89- 101.
doi: 10.1006/nimg.1995.1012
9 Fujihara K , Takei Y . FreeSurfer as a platform for associating brain structure with function[J]. Brain Nerve, 2018, 70 (7): 841- 848.
10 Guo CJ , Ferreira D , Fink K , et al. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis[J]. Eur Radiol, 2019, 29 (3): 1355- 1364.
doi: 10.1007/s00330-018-5710-x
11 Yokota H , Vijayasarathi A , Cekic M , et al. Diagnostic performance of glymphatic system evaluation using diffusion tensor imaging in idiopathic normal pressure hydrocephalus and mimickers[J]. Curr Gerontol Geriatr Res, 2019, 2019: 5675014.
doi: 10.1155/2019/5675014
12 Glasser MF , Coalson TS , Robinson EC , et al. A multi-modal parcellation of human cerebral cortex[J]. Nature, 2016, 536 (7615): 171- 178.
doi: 10.1038/nature18933
13 Vogel JW , La Joie R , Grothe MJ , et al. A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems[J]. Nat Commun, 2020, 11 (1): 960.
14 Iglesias JE , Insausti R , Lerma-Usabiaga G , et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology[J]. Neuroimage, 2018, 183: 314- 326.
doi: 10.1016/j.neuroimage.2018.08.012
15 Kunst M , Laurell E , Mokayes N , et al. A Cellular-Resolution Atlas of the Larval Zebrafish Brain[J]. Neuron, 2019, 103 (1): 21- 38.
doi: 10.1016/j.neuron.2019.04.034
16 Liu CR , Ye FQ , Yen CCC , et al. A digital 3D atlas of the marmoset brain based on multi-modal MRI[J]. Neuroimage, 2018, 169: 106- 116.
doi: 10.1016/j.neuroimage.2017.12.004
17 Murakami TC , Mano T , Saikawa S , et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing[J]. Nat Neurosci, 2018, 21 (4): 625- 637.
doi: 10.1038/s41593-018-0109-1
18 Oishi K , Mori S , Troncoso JC , et al. Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging[J]. Brain Struct Funct, 2020, 225 (4): 1293- 1312.
19 Tang YC , Hojatkashani C , Dinov ID , et al. The construction of a Chinese MRI brain atlas: A morphometric comparison study between Chinese and Caucasian cohorts[J]. Neuroimage, 2010, 51 (1): 33- 41.
doi: 10.1016/j.neuroimage.2010.01.111
20 Zhan J , Dinov ID , Li J , et al. Spatial-temporal atlas of human fetal brain development during the early second trimester[J]. Neuroimage, 2013, 82: 115- 126.
doi: 10.1016/j.neuroimage.2013.05.063
21 Yu Q , Ouyang A , Chalak L , et al. Structural development of human fetal and preterm brain cortical plate based on population-averaged templates[J]. Cereb Cortex, 2016, 26 (11): 4381- 4391.
doi: 10.1093/cercor/bhv201
22 Liang PP , Shi L , Chen N , et al. Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults[J]. Sci Rep, 2015, 5: 18216.
doi: 10.1038/srep18216
23 Wang X , Chen N , Zuo Z , et al. Probabilistic MRI brain anatomical atlases based on 1, 000 Chinese subjects[J]. PLoS One, 2013, 8 (1): e50939.
doi: 10.1371/journal.pone.0050939
24 Fan L , Li H , Zhuo J , et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture[J]. Cereb Cortex, 2016, 26 (8): 3508- 3526.
doi: 10.1093/cercor/bhw157
25 Hagen S , Jacques C , Maillard L , et al. Spatially dissociated intracerebral maps for face- and house-selective activity in the human ventral occipito-temporal cortex[J]. Cereb Cortex, 2020, 30 (7): 4026- 4043.
doi: 10.1093/cercor/bhaa022
26 No authors listed . Focus on human brain mapping[J]. Nat Neurosci, 2017, 20 (3): 297.
27 Sun B , Tang YC , Fan LZ , et al. The pineal region: thin sectional anatomy with MR correlation in the coronal plane[J]. Surg Radiol Anat, 2008, 30 (7): 575- 582.
doi: 10.1007/s00276-008-0375-9
28 Sun B , Wang D , Tang YC , et al. The pineal volume: a three-dimensional volumetric study in healthy young adults using 3.0 T MR data[J]. Int J Dev Neurosci, 2009, 27 (7): 655- 660.
doi: 10.1016/j.ijdevneu.2009.08.002
29 Tang YC , Sun W , Toga AW , et al. A probabilistic atlas of human brainstem pathways based on connectome imaging data[J]. Neuroimage, 2018, 169: 227- 239.
doi: 10.1016/j.neuroimage.2017.12.042
30 Novitskaya Y , Dumpelmann M , Vlachos A , et al. In vivo -assessment of the human temporal network: Evidence for asymmetrical effective connectivity[J]. Neuroimage, 2020, 214: 116769.
doi: 10.1016/j.neuroimage
31 Tang YC , Zhao L , Lou YX , et al. Brain structure differences between Chinese and Caucasian cohorts: A comprehensive morphometry study[J]. Hum Brain Mapp, 2018, 39 (5): 2147- 2155.
doi: 10.1002/hbm.23994
32 Lou Y , Zhao L , Yu S , et al. Brain asymmetry differences between Chinese and Caucasian populations: a surface-based morphometric comparison study[J]. Brain Imaging Behav, 2019.
doi: 10.1007/s11682-019-00184-7
33 Sun B , Ge H , Tang Y , et al. Asymmetries of the central sulcus in young adults: Effects of gender, age and sulcal pattern[J]. Int J Dev Neurosci, 2015, 44: 65- 74.
doi: 10.1016/j.ijdevneu
34 Fan L , Tang Y , Sun B , et al. Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study[J]. Brain Res, 2010, 1353: 60- 73.
doi: 10.1016/j.brainres
35 Yin X , Han Y , Ge H , et al. Inferior frontal white matter asymmetry correlates with executive control of attention[J]. Hum Brain Mapp, 2013, 34 (4): 796- 813.
doi: 10.1002/hbm.21477
36 Xiao M , Ge HT , Khundrakpam BS , et al. Attention performance measured by attention metwork test is correlated with global and regional efficiency of structural brain networks[J]. Front Behav Neurosci, 2016, 10: 194.
doi: 10.3389/fnbeh.2016.00194
37 Xu J , Rees G , Yin X , et al. Spontaneous neuronal activity predicts intersubject variations in executive control of attention[J]. Neuroscience, 2014, 263: 181- 192.
doi: 10.1016/j.neuroscience
38 Xu JH , Yin XT , Ge HT , et al. Attentional performance is correlated with the local regional efficiency of intrinsic brain networks[J]. Front Behav Neurosci, 2015, 9: 200.
doi: 10.3389/fnbeh
39 Xu J , Yin X , Ge H , et al. Heritability of the effective connectivity in the resting-state default mode metwork[J]. Cereb Cortex, 2017, 27 (12): 5626- 5634.
doi: 10.1093/cercor/bhw332
40 Yin XT , Zhao L , Xu JH , et al. Anatomical substrates of the alerting, orienting and executive control components of attention: Focus on the posterior parietal lobe[J]. PLoS One, 2012, 7 (11): e50590.
doi: 10.1371/journal.pone.0050590
41 Leng Y , Shi YG , Yu QW , et al. Phenotypic and genetic correlations between the lobar segments of the inferior fronto-occipital fasciculus and attention[J]. Sci Rep, 2016, 6: 33015.
doi: 10.1038/srep33015
42 Ge HT , Yin XT , Xu JH , et al. Fiber pathways of attention subnetworks revealed with tract-based spatial statistics (TBSS) and probabilistic tractography[J]. PLoS One, 2013, 8 (11): e78831.
doi: 10.1371/journal.pone.0078831
43 Grasby KL , Jahanshad N , Painter JN , et al. The genetic architecture of the human cerebral cortex[J]. Science, 2020, 367 (6484): 6690.
doi: 10.1126/science.aay6690
44 Reineberg AE , Hatoum AS , Hewitt JK , et al. Genetic and environmental influence on the human functional connectome[J]. Cereb Cortex, 2020, 30 (4): 2099- 2113.
doi: 10.1093/cercor/bhz225
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 58(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 58(7): 7 -14 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 15 -23 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 58(7): 24 -31 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 32 -37 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 38 -46 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 58(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 58(7): 53 -59 .
[9] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 58(7): 60 -66 .
[10] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 58(7): 67 -71 .