您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2026, Vol. 64 ›› Issue (1): 43-56.doi: 10.6040/j.issn.1671-7554.0.2025.0514

• 重点专题——精神与睡眠问题的机制证据与转化 • 上一篇    下一篇

EGCG对孤独症小鼠小脑浦肯野细胞及行为学的影响

杨贺旻1,孙茂林2,刘适1,殷玥3,张娜4,张明龙5   

  1. 1.齐齐哈尔医学院附属第三医院中心实验室, 黑龙江 齐齐哈尔 161006;2.齐齐哈尔医学院附属第三医院办公室, 黑龙江 齐齐哈尔 161006;3.齐齐哈尔医学院附属第三医院科研科, 黑龙江 齐齐哈尔 161006;4.齐齐哈尔医学院附属第三医院放疗科, 黑龙江 齐齐哈尔 161006; 5.齐齐哈尔医学院遗传学教研室, 黑龙江 齐齐哈尔 161006
  • 发布日期:2026-01-27
  • 通讯作者: 张明龙. E-mail:jylinyao@163.com杨贺旻. E-mail:18243393252@163.com
  • 基金资助:
    黑龙江省省属高等学校基本科研业务费科研项目(2022-KYYWF-0795);黑龙江省省属本科高校“优秀青年教师基础研究支持计划”项目(YQJH2024279);齐齐哈尔医学院科学院(博士专项)项目(QMSI2024B-04);齐齐哈尔医学院重点培育项目(2025-ZDPY-005)

Effects of EGCG on cerebellar Purkinje cells and behavioral phenotypes in a mouse model of autism spectrum disorder

YANG Hemin1, SUN Maolin2, LIU Shi1, YIN Yue3, ZHANG Na4, ZHANG Minglong5   

  1. 1. Central Laboratory, The Third Affiliate Hospital of Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China;
    2. Office of the President, The Third Affiliate Hospital of Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China;
    3. Scientific Research Department, The Third Affiliate Hospital of Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China;
    4. Department of Radiation Oncology, The Third Affiliate Hospital of Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China;
    5. Department of Genetics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
  • Published:2026-01-27

摘要: 目的 探究腹腔注射表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate, EGCG)对丙戊酸钠(valproic acid, VPA)诱导孤独症子代小鼠小脑浦肯野细胞形态和孤独症样行为的影响。 方法 构建VPA小鼠模型,腹腔注射EGCG,通过HE染色,免疫荧光实验观察EGCG对VPA诱导的孤独症谱系障碍(autism spectrum disorder, ASD)小鼠小脑浦肯野细胞病理学的影响。通过行为学方法(三箱社交实验、旷场实验、高架十字迷宫实验、新物体识别实验、Morris水迷宫实验)观察正常组小鼠、VPA组小鼠和VPA+EGCG组小鼠、社交水平、自发活动、焦虑以及学习记忆的差异。 结果 HE染色和免疫荧光实验表明,腹腔注射EGCG可逆转VPA诱导子代ASD小鼠小脑浦肯野细胞数量减少和病理学改变;三箱社交实验中,腹腔注射EGCG可改善VPA诱导子代ASD小鼠的社交倾向性障碍和新奇社交偏好;旷场实验和高架十字迷宫实验中,EGCG可减轻VPA诱导子代ASD小鼠在新异环境中的自发活动和焦虑状态;新物体识别实验中,EGCG能改善VPA诱导子代ASD小鼠对新物体识别和记忆能力缺陷;Morris水迷宫实验中,EGCG可缓解VPA诱导子代ASD小鼠对空间学习记忆功能障碍。 结论 EGCG减轻VPA诱导子代ASD小鼠小脑浦肯野细胞数量和病理学改变,改善ASD小鼠孤独症样行为障碍。

关键词: 表没食子儿茶素没食子酸酯, 孤独症谱系障碍, 小脑, 浦肯野细胞, 行为学

Abstract: Objective To explore the effects of intraperitoneal epigallocatechin-3-gallate(EGCG)on cerebellar Purkinje cell morphology and autism-like behaviors in valproic acid-induced autistic offspring mice. Methods A valproic acid(VPA)-induced mouse model of autism spectrum disorder(ASD)was established. Following intraperitoneal injection of epigallocatechin-3-gallate(EGCG), hematoxylin and eosin(H&E)staining and immunofluorescence were performed to evaluate the effects of EGCG on VPA-induced pathological changes in cerebellar Purkinje cells. Behavioral tests including the three-chamber social interaction test, open field test, elevated plus maze test, novel object recognition test, and Morris water maze test were performed to assess differences in social behavior, spontaneous locomotor activity, anxiety-like behaviors, and learning/memory performance among control mice, VPA-exposed mice, and VPA+ EGCG-treated mice. Results H&E staining and immunofluorescence analyses revealed that intraperitoneal administration of EGCG reversed VPA-induced reductions in cerebellar Purkinje cell density and ameliorated pathological alterations in offspring ASD model mice. In the three-chamber social test, EGCG administration improved social preference deficits and restored novelty-induced social interaction in VPA-exposed mice. Behavioral assessments further demonstrated that EGCG significantly reduced hyperactivity in novel environments(open field test)and alleviated anxiety-like behaviors(elevated plus maze test)in VPA-induced offspring. Additionally, EGCG enhanced novel object recognition memory in the novel object recognition test and mitigated spatial learning and memory impairments in the Morris water maze. Conclusion EGCG treatment ameliorates the VPA-induced reduction in the number of cerebellar Purkinje cells and the associated pathological changes in the cerebellum of offspring autistic mice, resulting in an improvement in ASD-like behavioral abnormalities.

Key words: Epigallocatechin-3-gallate, Autism spectrum disorder, Cerebellum, Purkinje cell, Behavioral

中图分类号: 

  • R749
[1] Roy M, Strate P. Autism spectrum disorders in adulthood-symptoms, diagnosis, and treatment[J]. Dtsch Arztebl Int, 2023, 120(6): 87-93.
[2] Lai MC, Lombardo MV, Baron-Cohen S. Autism[J]. Lancet, 2014, 383(9920): 896-910.
[3] Hirota T, King BH. Autism spectrum disorder: a review[J]. JAMA, 2023, 329(2): 157-168.
[4] Chen CM, Wu CC, Kim Y, et al. Enhancing social beha-vior in an autism spectrum disorder mouse model: investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention[J]. Gut Microbes, 2024, 16(1): 2359501. doi: 10.1080/19490976.2024.2359501
[5] Banji D, Banji OJF, Abbagoni S, et al. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals[J]. Brain Res, 2011, 1410: 141-151. doi: 10.1016/j.brainres.2011.06.063
[6] Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder[J]. Nat Rev Dis Primers, 2020, 6: 5. doi: 10.1038/s41572-019-0138-4
[7] Kelly E, Meng FT, Fujita H, et al. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits[J]. Nat Neurosci, 2020, 23(9): 1102-1110.
[8] Cupolillo D, Hoxha E, Faralli A, et al. Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice[J]. Neuropsychopharmacology, 2016, 41(6): 1457-1466.
[9] Moreno-Rius J. Is there an “antisocial” cerebellum? Evidence from disorders other than autism characterized by abnormal social behaviours[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 89: 1-8. doi: 10.1016/j.pnpbp.2018.08.025
[10] Serra D, Almeida LM, Dinis TCP. Polyphenols as food bioactive compounds in the context of Autism Spectrum Disorders: a critical mini-review[J]. Neurosci Biobehav Rev, 2019, 102: 290-298. doi: 10.1016/j.neubiorev.2019.05.010
[11] Valenti D, de Bari L, de Rasmo D, et al. The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model[J]. Biochim Biophys Acta, 2016, 1862(6): 1093-1104.
[12] Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate(EGCG): mechanisms, perspectives and clinical applications[J]. Biochem Pharmacol, 2011, 82(12): 1807-1821.
[13] Wang CY, Derderian KD, Hamada E, et al. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD[J]. Neuron, 2024, 112(9): 1444-1455.
[14] Wang RN, Tan JH, Guo JX, et al. Aberrant development and synaptic transmission of cerebellar cortex in a VPA induced mouse autism model[J]. Front Cell Neurosci, 2018, 12: 500. doi: 10.3389/fncel.2018.00500
[15] Han JK, Kwon SH, Kim YG, et al. Ablation of STAT3 in Purkinje cells reorganizes cerebellar synaptic plasticity in long-term fear memory network[J]. eLife, 2021, 10: e63291. doi: 10.7554/eLife.63291
[16] Bai J, Ye T, Wei YB, et al. Opioid receptors modulate parallel fiber-Purkinje cell synaptic transmission in mouse cerebellum[J]. Neurosci Lett, 2022, 770: 136356. doi: 10.1016/j.neulet.2021.136356
[17] Wang LL, Chen JH, Hu YL, et al. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD[J]. Transl Psychiatry, 2022, 12(1): 114. doi: 10.1038/s41398-022-01875-4
[18] Yang HM, Zhan LJ, Lin XQ, et al. Fentanyl inhibits air puff-evoked sensory information processing in mouse cerebellar neurons recorded in vivo[J]. Front Syst Neurosci, 2020, 14: 51. doi: 10.3389/fnsys.2020.00051
[19] Wang JF, Cao Y, Hou WL, et al. Fecal microbiota transplantation improves VPA-induced ASD mice by modulating the serotonergic and glutamatergic synapse signaling pathways[J]. Transl Psychiatry, 2023, 13(1): 17. doi: 10.1038/s41398-023-02307-7
[20] Diehl MM, Iravedra-Garcia JM, Morán-Sierra J, et al. Divergent projections of the prelimbic cortex bidirectiona-lly regulate active avoidance[J]. eLife, 2020, 9: e59281. doi: 10.7554/eLife.59281
[21] Wu JX, Zhang JL, Chen XL, et al. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids[J]. Mol Psychiatry, 2024, 29(8): 2424-2437.
[22] Li SY, Wang ZY, Liu G, et al. Neurodegenerative di-seases and catechins:(-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress[J]. Front Nutr, 2024, 11: 1425839. doi: 10.3389/fnut.2024.1425839
[23] Chen TT, Yang YF, Zhu SJ, et al. Inhibition of Aβ aggregates in Alzheimer’s disease by epigallocatechin and epicatechin-3-gallate from green tea[J]. Bioorg Chem, 2020, 105: 104382. doi: 10.1016/j.bioorg.2020.104382
[24] Lee YJ, Choi DY, Yun YP, et al. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties[J]. J Nutr Biochem, 2013, 24(1): 298-310.
[25] Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate(EGCG)[J]. Nutr J, 2016, 15(1): 60. doi: 10.1186/s12937-016-0179-4
[26] Park KS, Oh JH, Yoo HS, et al.(-)-Epigallocatechin-3-O-gallate(EGCG)reverses caffeine-induced anxiogenic-like effects[J]. Neurosci Lett, 2010, 481(2): 131-134.
[27] Johnson AJ, Shankland E, Richards T, et al. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder[J]. Psychiatry Res Neuroima-ging, 2023, 336: 111745. doi: 10.1016/j.pscychresns.2023.111745
[28] Wang XN, Zhao ZQ, Guo JS, et al. GABAB1 receptor knockdown in prefrontal cortex induces behavioral aberrations associated with autism spectrum disorder in mice[J]. Brain Res Bull, 2023, 202: 110755. doi: 10.1016/j.brainresbull.2023.110755
[29] 石岳, 朱波, 黄宇光. 兴奋-抑制失衡与孤独症谱系障碍: 作用机制及治疗进展[J]. 协和医学杂志, 2023, 14(4): 844-849. SHI Yue, ZHU Bo, HUANG Yuguang. Excitatory-inhibitory imbalance and autism spectrum disorder: mechanism and treatment progress[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 844-849.
[30] Lenart J, Augustyniak J, Lazarewicz JW, et al. Altered expression of glutamatergic and GABAergic genes in the valproic acid-induced rat model of autism: a screening test[J]. Toxicology, 2020, 440: 152500. doi: 10.1016/j.tox.2020.152500
[31] Pietropaolo S, Provenzano G. Editorial: targeting excitation-inhibition imbalance in neurodevelopmental and autism spectrum disorders[J]. Front Neurosci, 2022, 16: 968115. doi: 10.3389/fnins.2022.968115
[32] Salari N, Rasoulpoor S, Rasoulpoor S, et al. The global prevalence of autism spectrum disorder: a comprehensive systematic review and meta-analysis[J]. Ital J Pediatr, 2022, 48(1): 112. doi: 10.1186/s13052-022-01310-w
[33] Wang L, Wang BQ, Wu CY, et al. Autism spectrum disorder: neurodevelopmental risk factors, biological mechanism, and precision therapy[J]. Int J Mol Sci, 2023, 24(3): 1819. doi: 10.3390/ijms24031819
[1] 魏旭鹏,常成,赵秀鹤. 模拟多系统萎缩的抗Homer3抗体相关自身免疫性小脑共济失调1例并文献复习[J]. 山东大学学报 (医学版), 2025, 63(5): 95-100.
[2] 郭玲玲,车超,陈坤平,柴润玉,杨秉上,曹爱华. 316例语言发育落后儿童的“五不”行为观察[J]. 山东大学学报 (医学版), 2021, 59(2): 95-101.
[3] 马翔宇,刘士宝,李卫国,徐淑军,李新钢,张磊. 乙状窦后入路无血快速开颅技术单中心标准化操作流程[J]. 山东大学学报 (医学版), 2019, 57(9): 104-108.
[4] 胡丽萍,王乐,金亮,刘燕霞,崔东清,曹丽丽. SYNE1基因复合杂合突变导致常染色体隐性小脑共济失调1型病例报告并文献复习[J]. 山东大学学报 (医学版), 2019, 57(11): 78-82.
[5] 项春红,吕丽,江蓓,肖晓燕,胡昭. EGCG抑制内质网应激减轻高糖致HK-2细胞凋亡的作用[J]. 山东大学学报 (医学版), 2017, 55(12): 1-6.
[6] 陈东,马专昌,李博,孙鼎琪,张克勤,张辉,傅强. EGCG对老龄大鼠阴茎组织中PRMT1、DDAH、ADMA、NOS通路的影响[J]. 山东大学学报(医学版), 2016, 54(5): 17-22.
[7] 栾海辉,许巍,王牧川,吴林,王玲玲,马俊,刘艺鸣. 脊髓小脑性共济失调6型一家系临床、病理和分子生物学特点[J]. 山东大学学报(医学版), 2016, 54(2): 63-67.
[8] 尹延彦,赵林远,张晓欢,黄辉,孙贝贝,李文杰. EGCG对铅暴露C57BL/6仔鼠海马Aβ蛋白及NEP酶表达的影响[J]. 山东大学学报(医学版), 2016, 54(12): 8-13.
[9] 冯子超,王济潍,李超,李卫国,陈腾,马翔宇,徐淑军,李新钢. 单纯神经内镜在桥小脑角区的手术应用[J]. 山东大学学报(医学版), 2016, 54(10): 71-75.
[10] 李媛媛, 张楠, 徐谧, 秦明明, 窦冬冬, 朱薇薇. 新生小鼠缺氧缺血脑组织基质细胞衍生因子1α的表达及其作用[J]. 山东大学学报(医学版), 2015, 53(10): 26-31.
[11] 夏海苗, 隋汝波, 张磊, 刘丹丹. 血管性痴呆大鼠小脑顶核形态学变化及活化型Caspase-3、PARP-1的表达[J]. 山东大学学报(医学版), 2014, 52(8): 34-38.
[12] 辛玉1,袁俊华2,孙成刚1. EGCG抑制结肠癌HT-29细胞生长及血管生成的作用机制[J]. 山东大学学报(医学版), 2013, 51(3): 21-26.
[13] 王力1,江虹1,于洪鸾2,孙琳1,潘芳1 . 低剂量氯胺酮对食蟹猴行为、海马和前额叶皮质超微结构的影响[J]. 山东大学学报(医学版), 2010, 48(9): 64-.
[14] 陈丽,张成琪,王新怡,杨志强. 轻度认知功能障碍与阿尔茨海默病患者小脑的MRI定量分析[J]. 山东大学学报(医学版), 2010, 48(10): 85-.
[15] 冀永娟,李颖,江 虹,樊淑娟,王利江,潘 芳. 慢性应激对不同月龄大鼠行为学及雌激素水平的影响[J]. 山东大学学报(医学版), 2007, 45(1): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!