山东大学学报 (医学版) ›› 2026, Vol. 64 ›› Issue (1): 43-56.doi: 10.6040/j.issn.1671-7554.0.2025.0514
• 重点专题——精神与睡眠问题的机制证据与转化 • 上一篇 下一篇
杨贺旻1,孙茂林2,刘适1,殷玥3,张娜4,张明龙5
YANG Hemin1, SUN Maolin2, LIU Shi1, YIN Yue3, ZHANG Na4, ZHANG Minglong5
摘要: 目的 探究腹腔注射表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate, EGCG)对丙戊酸钠(valproic acid, VPA)诱导孤独症子代小鼠小脑浦肯野细胞形态和孤独症样行为的影响。 方法 构建VPA小鼠模型,腹腔注射EGCG,通过HE染色,免疫荧光实验观察EGCG对VPA诱导的孤独症谱系障碍(autism spectrum disorder, ASD)小鼠小脑浦肯野细胞病理学的影响。通过行为学方法(三箱社交实验、旷场实验、高架十字迷宫实验、新物体识别实验、Morris水迷宫实验)观察正常组小鼠、VPA组小鼠和VPA+EGCG组小鼠、社交水平、自发活动、焦虑以及学习记忆的差异。 结果 HE染色和免疫荧光实验表明,腹腔注射EGCG可逆转VPA诱导子代ASD小鼠小脑浦肯野细胞数量减少和病理学改变;三箱社交实验中,腹腔注射EGCG可改善VPA诱导子代ASD小鼠的社交倾向性障碍和新奇社交偏好;旷场实验和高架十字迷宫实验中,EGCG可减轻VPA诱导子代ASD小鼠在新异环境中的自发活动和焦虑状态;新物体识别实验中,EGCG能改善VPA诱导子代ASD小鼠对新物体识别和记忆能力缺陷;Morris水迷宫实验中,EGCG可缓解VPA诱导子代ASD小鼠对空间学习记忆功能障碍。 结论 EGCG减轻VPA诱导子代ASD小鼠小脑浦肯野细胞数量和病理学改变,改善ASD小鼠孤独症样行为障碍。
中图分类号:
| [1] Roy M, Strate P. Autism spectrum disorders in adulthood-symptoms, diagnosis, and treatment[J]. Dtsch Arztebl Int, 2023, 120(6): 87-93. [2] Lai MC, Lombardo MV, Baron-Cohen S. Autism[J]. Lancet, 2014, 383(9920): 896-910. [3] Hirota T, King BH. Autism spectrum disorder: a review[J]. JAMA, 2023, 329(2): 157-168. [4] Chen CM, Wu CC, Kim Y, et al. Enhancing social beha-vior in an autism spectrum disorder mouse model: investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention[J]. Gut Microbes, 2024, 16(1): 2359501. doi: 10.1080/19490976.2024.2359501 [5] Banji D, Banji OJF, Abbagoni S, et al. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals[J]. Brain Res, 2011, 1410: 141-151. doi: 10.1016/j.brainres.2011.06.063 [6] Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder[J]. Nat Rev Dis Primers, 2020, 6: 5. doi: 10.1038/s41572-019-0138-4 [7] Kelly E, Meng FT, Fujita H, et al. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits[J]. Nat Neurosci, 2020, 23(9): 1102-1110. [8] Cupolillo D, Hoxha E, Faralli A, et al. Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice[J]. Neuropsychopharmacology, 2016, 41(6): 1457-1466. [9] Moreno-Rius J. Is there an “antisocial” cerebellum? Evidence from disorders other than autism characterized by abnormal social behaviours[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 89: 1-8. doi: 10.1016/j.pnpbp.2018.08.025 [10] Serra D, Almeida LM, Dinis TCP. Polyphenols as food bioactive compounds in the context of Autism Spectrum Disorders: a critical mini-review[J]. Neurosci Biobehav Rev, 2019, 102: 290-298. doi: 10.1016/j.neubiorev.2019.05.010 [11] Valenti D, de Bari L, de Rasmo D, et al. The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model[J]. Biochim Biophys Acta, 2016, 1862(6): 1093-1104. [12] Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate(EGCG): mechanisms, perspectives and clinical applications[J]. Biochem Pharmacol, 2011, 82(12): 1807-1821. [13] Wang CY, Derderian KD, Hamada E, et al. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD[J]. Neuron, 2024, 112(9): 1444-1455. [14] Wang RN, Tan JH, Guo JX, et al. Aberrant development and synaptic transmission of cerebellar cortex in a VPA induced mouse autism model[J]. Front Cell Neurosci, 2018, 12: 500. doi: 10.3389/fncel.2018.00500 [15] Han JK, Kwon SH, Kim YG, et al. Ablation of STAT3 in Purkinje cells reorganizes cerebellar synaptic plasticity in long-term fear memory network[J]. eLife, 2021, 10: e63291. doi: 10.7554/eLife.63291 [16] Bai J, Ye T, Wei YB, et al. Opioid receptors modulate parallel fiber-Purkinje cell synaptic transmission in mouse cerebellum[J]. Neurosci Lett, 2022, 770: 136356. doi: 10.1016/j.neulet.2021.136356 [17] Wang LL, Chen JH, Hu YL, et al. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD[J]. Transl Psychiatry, 2022, 12(1): 114. doi: 10.1038/s41398-022-01875-4 [18] Yang HM, Zhan LJ, Lin XQ, et al. Fentanyl inhibits air puff-evoked sensory information processing in mouse cerebellar neurons recorded in vivo[J]. Front Syst Neurosci, 2020, 14: 51. doi: 10.3389/fnsys.2020.00051 [19] Wang JF, Cao Y, Hou WL, et al. Fecal microbiota transplantation improves VPA-induced ASD mice by modulating the serotonergic and glutamatergic synapse signaling pathways[J]. Transl Psychiatry, 2023, 13(1): 17. doi: 10.1038/s41398-023-02307-7 [20] Diehl MM, Iravedra-Garcia JM, Morán-Sierra J, et al. Divergent projections of the prelimbic cortex bidirectiona-lly regulate active avoidance[J]. eLife, 2020, 9: e59281. doi: 10.7554/eLife.59281 [21] Wu JX, Zhang JL, Chen XL, et al. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids[J]. Mol Psychiatry, 2024, 29(8): 2424-2437. [22] Li SY, Wang ZY, Liu G, et al. Neurodegenerative di-seases and catechins:(-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress[J]. Front Nutr, 2024, 11: 1425839. doi: 10.3389/fnut.2024.1425839 [23] Chen TT, Yang YF, Zhu SJ, et al. Inhibition of Aβ aggregates in Alzheimer’s disease by epigallocatechin and epicatechin-3-gallate from green tea[J]. Bioorg Chem, 2020, 105: 104382. doi: 10.1016/j.bioorg.2020.104382 [24] Lee YJ, Choi DY, Yun YP, et al. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties[J]. J Nutr Biochem, 2013, 24(1): 298-310. [25] Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate(EGCG)[J]. Nutr J, 2016, 15(1): 60. doi: 10.1186/s12937-016-0179-4 [26] Park KS, Oh JH, Yoo HS, et al.(-)-Epigallocatechin-3-O-gallate(EGCG)reverses caffeine-induced anxiogenic-like effects[J]. Neurosci Lett, 2010, 481(2): 131-134. [27] Johnson AJ, Shankland E, Richards T, et al. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder[J]. Psychiatry Res Neuroima-ging, 2023, 336: 111745. doi: 10.1016/j.pscychresns.2023.111745 [28] Wang XN, Zhao ZQ, Guo JS, et al. GABAB1 receptor knockdown in prefrontal cortex induces behavioral aberrations associated with autism spectrum disorder in mice[J]. Brain Res Bull, 2023, 202: 110755. doi: 10.1016/j.brainresbull.2023.110755 [29] 石岳, 朱波, 黄宇光. 兴奋-抑制失衡与孤独症谱系障碍: 作用机制及治疗进展[J]. 协和医学杂志, 2023, 14(4): 844-849. SHI Yue, ZHU Bo, HUANG Yuguang. Excitatory-inhibitory imbalance and autism spectrum disorder: mechanism and treatment progress[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 844-849. [30] Lenart J, Augustyniak J, Lazarewicz JW, et al. Altered expression of glutamatergic and GABAergic genes in the valproic acid-induced rat model of autism: a screening test[J]. Toxicology, 2020, 440: 152500. doi: 10.1016/j.tox.2020.152500 [31] Pietropaolo S, Provenzano G. Editorial: targeting excitation-inhibition imbalance in neurodevelopmental and autism spectrum disorders[J]. Front Neurosci, 2022, 16: 968115. doi: 10.3389/fnins.2022.968115 [32] Salari N, Rasoulpoor S, Rasoulpoor S, et al. The global prevalence of autism spectrum disorder: a comprehensive systematic review and meta-analysis[J]. Ital J Pediatr, 2022, 48(1): 112. doi: 10.1186/s13052-022-01310-w [33] Wang L, Wang BQ, Wu CY, et al. Autism spectrum disorder: neurodevelopmental risk factors, biological mechanism, and precision therapy[J]. Int J Mol Sci, 2023, 24(3): 1819. doi: 10.3390/ijms24031819 |
| [1] | 魏旭鹏,常成,赵秀鹤. 模拟多系统萎缩的抗Homer3抗体相关自身免疫性小脑共济失调1例并文献复习[J]. 山东大学学报 (医学版), 2025, 63(5): 95-100. |
| [2] | 郭玲玲,车超,陈坤平,柴润玉,杨秉上,曹爱华. 316例语言发育落后儿童的“五不”行为观察[J]. 山东大学学报 (医学版), 2021, 59(2): 95-101. |
| [3] | 马翔宇,刘士宝,李卫国,徐淑军,李新钢,张磊. 乙状窦后入路无血快速开颅技术单中心标准化操作流程[J]. 山东大学学报 (医学版), 2019, 57(9): 104-108. |
| [4] | 胡丽萍,王乐,金亮,刘燕霞,崔东清,曹丽丽. SYNE1基因复合杂合突变导致常染色体隐性小脑共济失调1型病例报告并文献复习[J]. 山东大学学报 (医学版), 2019, 57(11): 78-82. |
| [5] | 项春红,吕丽,江蓓,肖晓燕,胡昭. EGCG抑制内质网应激减轻高糖致HK-2细胞凋亡的作用[J]. 山东大学学报 (医学版), 2017, 55(12): 1-6. |
| [6] | 陈东,马专昌,李博,孙鼎琪,张克勤,张辉,傅强. EGCG对老龄大鼠阴茎组织中PRMT1、DDAH、ADMA、NOS通路的影响[J]. 山东大学学报(医学版), 2016, 54(5): 17-22. |
| [7] | 栾海辉,许巍,王牧川,吴林,王玲玲,马俊,刘艺鸣. 脊髓小脑性共济失调6型一家系临床、病理和分子生物学特点[J]. 山东大学学报(医学版), 2016, 54(2): 63-67. |
| [8] | 尹延彦,赵林远,张晓欢,黄辉,孙贝贝,李文杰. EGCG对铅暴露C57BL/6仔鼠海马Aβ蛋白及NEP酶表达的影响[J]. 山东大学学报(医学版), 2016, 54(12): 8-13. |
| [9] | 冯子超,王济潍,李超,李卫国,陈腾,马翔宇,徐淑军,李新钢. 单纯神经内镜在桥小脑角区的手术应用[J]. 山东大学学报(医学版), 2016, 54(10): 71-75. |
| [10] | 李媛媛, 张楠, 徐谧, 秦明明, 窦冬冬, 朱薇薇. 新生小鼠缺氧缺血脑组织基质细胞衍生因子1α的表达及其作用[J]. 山东大学学报(医学版), 2015, 53(10): 26-31. |
| [11] | 夏海苗, 隋汝波, 张磊, 刘丹丹. 血管性痴呆大鼠小脑顶核形态学变化及活化型Caspase-3、PARP-1的表达[J]. 山东大学学报(医学版), 2014, 52(8): 34-38. |
| [12] | 辛玉1,袁俊华2,孙成刚1. EGCG抑制结肠癌HT-29细胞生长及血管生成的作用机制[J]. 山东大学学报(医学版), 2013, 51(3): 21-26. |
| [13] | 王力1,江虹1,于洪鸾2,孙琳1,潘芳1 . 低剂量氯胺酮对食蟹猴行为、海马和前额叶皮质超微结构的影响[J]. 山东大学学报(医学版), 2010, 48(9): 64-. |
| [14] | 陈丽,张成琪,王新怡,杨志强. 轻度认知功能障碍与阿尔茨海默病患者小脑的MRI定量分析[J]. 山东大学学报(医学版), 2010, 48(10): 85-. |
| [15] | 冀永娟,李颖,江 虹,樊淑娟,王利江,潘 芳. 慢性应激对不同月龄大鼠行为学及雌激素水平的影响[J]. 山东大学学报(医学版), 2007, 45(1): 14-17. |
|
||