您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (9): 20-30.doi: 10.6040/j.issn.1671-7554.0.2024.1463

• “大数据赋能AI大模型驱动的多模态队列设计与分析”重点专题 • 上一篇    

虚弱和癫痫关联研究:前瞻性队列和孟德尔随机化分析

王乐1,2,罗清馨1,2,吴思佳1,2,吴雨桐1,2,葛祎蕾1,2,俞一凡1,2,韦云1,2,吉寒冰1,2,刘铁梅1,2,张紫妍1,2,修佳伟1,2,薛付忠1,2,3,李洪凯1,2   

  1. 1.山东大学齐鲁医学院公共卫生学院医学数据学系, 山东 济南 250012;2.国家健康医疗大数据研究院, 山东 济南 250003;3.山东大学齐鲁医院, 山东 济南 250012
  • 发布日期:2025-09-08
  • 通讯作者: 李洪凯. E-mail:lihongkaiyouxiang@163.com薛付忠. E-mail:xuefzh@sdu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFC3502100);国家自然科学基金面上项目(82173625);国家自然科学基金重点项目(82330108);山东省重点研发计划(2024CXPT085);2021年山东省医学会临床研究基金-齐鲁专项(YXH2022DZX02008);河南省重大科技专项项目(241100310300)

Associations between frailty and the risk of epilepsy: a prospective cohort study and Mendelian randomization analysis

WANG Le1,2, LUO Qingxin1,2, WU Sijia1,2, WU Yutong1,2, GE Yilei1,2, YU Yifan1,2, WEI Yun1,2, JI Hanbing1,2, LIU Tiemei1,2, ZHANG Ziyan1,2, XIU Jiawei1,2, XUE Fuzhong1,2,3, LI Hongkai1,2   

  1. 1. Department of Medical Dataology, School of Public Health, Qilu Medical College, Shandong University, Jinan 250012, Shandong, China;
    2. National Institute of Health and Medicine Big Data, Shandong University, Jinan 250003, Shandong, China;
    3. Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2025-09-08

摘要: 目的 基于英国生物样本库(UK Biobank, UKB)数据,探讨身体虚弱与癫痫发病风险的关联。 方法 从UKB数据库筛选出368 857例目标人群,在2006年至2020年基线调查时收集体质量减轻、疲惫频率、无力、缺乏身体活动和走路速度慢等5项暴露信息,获得随访期间的新发癫痫事件,并调整基线调查时年龄、性别、种族、受教育程度、家庭平均年收入、吸烟状况、饮酒状况、脑血管疾病、痴呆、头部受伤、脑部感染、酒精相关疾病等混杂因素。采用COX比例风险模型计算虚弱表型与癫痫关联的风险比(hazard ratio, HR)及95%置信区间(confidence interval, CI),并以倾向性得分匹配作为补充性分析。同时,使用全基因组关联研究(genome-wide association study, GWAS)数据筛选遗传工具变量(instrument variables, IVs),进行孟德尔随机化分析(Mendelian randomization, MR),包括逆方差加权(inverse variance weighted, IVW)法、MR-Egger法、加权中位数(weighted median, WME)法、简单模式(simple mode, SM)法和加权模式(weighted mode, WM)法,敏感性分析验证结果的稳健性。 结果 调整可能的混杂因素后,队列分析结果显示身体虚弱与癫痫发病风险之间存在显著关联,HR(95%CI)为1.72(1.44~2.05),P<0.001;匹配后的结果与主分析基本一致。MR结果中IVW法(OR=1.99, 95%CI: 1.21~3.28, P=0.007)和WME法(OR=2.24, 95%CI: 1.12~4.46, P=0.022)结果均表明遗传决定的虚弱指数与癫痫风险呈正相关,敏感性分析证明结果不存在异质性和水平多效性。 结论 身体虚弱可能是癫痫的风险因素,此结论有助于探讨癫痫病因及发病机制,为癫痫的临床治疗方案和预防策略提供数据支撑。

关键词: 癫痫, 虚弱, 队列研究, 孟德尔随机化

Abstract: Objective To evaluate the associations between physical frailty and the risk of epilepsy based on the UK Biobank(UKB)database. Methods A total of 368,857 target participants were selected from the UKB database. Five exposures from the baseline data were collected from 2006 to 2020, which included weight loss, exhaustion frequency, weakness, physical inactivity and slow walking speed. New epilepsy incidents during the follow-up period were further obtained. COX proportional hazards regression models were applied to evaluate the hazard ratio(HR)and 95% confidence interval(CI)of frailty phenotype with the risk of epilepsy after adjusting for age, gender, race, education level, family income, smoking status, alcohol status, cerebrovascular diseases, dementia, head injuries, brain infections and alcohol-related disorders at baseline. Propensity score matching was applied as supplementary analysis. Mendelian randomization(MR)analysis was conducted using genetic instrumental variables(IVs)selected from genome-wide association study(GWAS)data, including inverse variance-weighting(IVW)method, MR-Egger method, weighted median(WME)method, simple mode(SM)method and weighted mode(WM)method. Sensitivity analysis was performed to verify the robustness of results. Results The cohort analysis revealed a significant association between physical frailty and the risk of epilepsy after adjustment for potential confounding, with an HR(95%CI)of 1.72(1.44-2.05), P<0.001. Results after matching were consistent with the main analysis. IVW method(OR=1.99, 95%CI: 1.21-3.28, P=0.007)and WME method(OR=2.24, 95%CI: 1.12-4.46, P=0.022)indicated a positive correction between genetically determined frailty index and epilepsy risk. Sensitivity analysis confirmed the absence of heterogeneity and horizontal pleiotropy. Conclusion Physical frailty may contribute to the development of epilepsy. These results help to explore the etiology and pathogenesis of epilepsy, and provide evidence for clinical epilepsy treatment and prevention strategies.

Key words: Epilepsy, Frailty, Cohort studies, Mendelian randomization

中图分类号: 

  • R742.1
[1] Löscher W, Klitgaard H, Twyman RE, et al. New avenues for anti-epileptic drug discovery and development[J]. Nat Rev Drug Discov, 2013, 12(10): 757-776.
[2] Manford M. Recent advances in epilepsy[J]. J Neurol, 2017, 264(8): 1811-1824.
[3] Ngugi AK, Bottomley C, Kleinschmidt I, et al. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach[J]. Epilepsia, 2010, 51(5): 883-890.
[4] Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521.
[5] Saxena S, Li S. Defeating epilepsy: a global public health commitment[J]. Epilepsia Open, 2017, 2(2): 153-155.
[6] Hoogendijk EO, Afilalo J, Ensrud KE, et al. Frailty: implications for clinical practice and public health[J]. Lancet, 2019, 394(10206): 1365-1375.
[7] Clegg A, Young J, Iliffe S, et al. Frailty in elderly people[J]. Lancet, 2013, 381(9868): 752-762.
[8] Cerulli Irelli E, Borioni MS, Morano A, et al. Frailty as a comprehensive health measure beyond seizure control in patients with epilepsy: a cross-sectional study[J]. Epilepsia, 2024, 65(6): 1658-1667.
[9] 张帅帅, 黄宇靖, 贾肖扬, 等. 虚弱与癫痫发生风险的因果关系: 孟德尔随机化分析[J]. 实用心脑肺血管病杂志, 2025, 33(1): 67-70.
[10] Zhong R, Zhao T, Li N, et al. Fatigue, sleep quality, depression symptoms, and antiseizure medication resis-tance in patients with newly diagnosed epilepsy[J]. Ther Adv Neurol Disord, 2025, 18: 17562864251325338. doi:10.1177/17562864251325338
[11] Van Epps P, Oswald D, Higgins PA, et al. Frailty has a stronger association with inflammation than age in older veterans[J]. Immun Ageing, 2016, 13: 27. doi:10.1186/s12979-016-0082-z
[12] Aunan JR, Watson MM, Hagland HR, et al. Molecular and biological hallmarks of ageing[J]. Br J Surg, 2016, 103(2): e29-e46.
[13] Rana A, Musto AE. The role of inflammation in the development of epilepsy[J]. J Neuroinflammation, 2018, 15(1): 144. doi:10.1186/s12974-018-1192-7
[14] Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data[J]. Nature, 2018, 562(7726): 203-209.
[15] Ollier W, Sprosen T, Peakman T. UK Biobank: from concept to reality[J]. Pharmacogenomics, 2005, 6(6): 639-646.
[16] Bensken WP, Navale SM, Andrew AS, et al. Delays and disparities in diagnosis for adults with epilepsy: fin-dings from U.S. medicaid data[J]. Epilepsy Res, 2020, 166: 106406. doi:10.1016/j.eplepsyres.2020.106406
[17] Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype[J]. J Gerontol A Biol Sci Med Sci, 2001, 56(3): M146-M156.
[18] Hanlon P, Nicholl BI, Jani BD, et al. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493,737 UK Biobank participants[J]. Lancet Public Health, 2018, 3(7): e323-e332.
[19] Petermann-Rocha F, Lyall DM, Gray SR, et al. Associations between physical frailty and dementia incidence: a prospective study from UK Biobank[J]. Lancet Healthy Longev, 2020, 1(2): e58-e68.
[20] Zheng Z, LYU Y, Rong S, et al. Physical frailty, genetic predisposition, and incident Parkinson disease[J]. JAMA Neurol, 2023, 80(5): 455-461.
[21] 王子旸, 索晨, 林春青, 等. 生命早期暴露与结直肠癌关联的前瞻性队列研究: 基于英国生物样本库的分析[J]. 肿瘤, 2024, 44(5): 478-487.
[22] Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984[J]. Epilepsia, 1993, 34(3): 453-468.
[23] Mao Y, Ahrenfeldt LJ, Christensen K, et al. Risk of epilepsy in opposite-sex and same-sex twins: a twin cohort study[J]. Biol Sex Differ, 2018, 9(1): 21. doi:10.1186/s13293-018-0179-5
[24] Gregerson CHY, Bakian AV, Wilkes J, et al. Disparities in pediatric epilepsy remission are associated with race and ethnicity[J]. J Child Neurol, 2019, 34(14): 928-936.
[25] Kang Y, Kim S, Jung Y, et al. Exploring the smoking-epilepsy Nexus: a systematic review and meta-analysis of observational studies: smoking and epilepsy[J]. BMC Med, 2024, 22(1): 91. doi:10.1186/s12916-024-03307-0
[26] Gorton HC, Webb RT, Parisi R, et al. Alcohol-specific mortality in people with epilepsy: cohort studies in two independent population-based datasets[J]. Front Neurol, 2020, 11: 623139. doi:10.3389/fneur.2020.623139
[27] Starck C, Helminen M, Auvinen A, et al. Education and employment among patients with childhood-onset epilepsy in adulthood: a population-based cohort study[J]. Epilepsy Behav, 2024, 159: 109988. doi:10.1016/j.yebeh.2024.109988
[28] Tang DH, Malone DC, Warholak TL, et al. Prevalence and incidence of epilepsy in an elderly and low-income population in the United States[J]. J Clin Neurol, 2015, 11(3): 252-261.
[29] Sundelin HEK, Tomson T, Zelano J, et al. Pediatric ischemic stroke and epilepsy: a nationwide cohort study[J]. Stroke, 2021, 52(11): 3532-3540.
[30] Stefanidou M, Beiser AS, Himali JJ, et al. Bi-directional association between epilepsy and dementia: the Framingham heart study[J]. Neurology, 2020, 95(24): e3241-e3247.
[31] Schneider ALC, Gottesman RF, Krauss GL, et al. Association of head injury with late-onset epilepsy: results from the atherosclerosis risk in communities cohort[J]. Neurology, 2022, 98(8): e808-e817.
[32] Vezzani A, Fujinami RS, White HS, et al. Infections, inflammation and epilepsy[J]. Acta Neuropathol, 2016, 131(2): 211-234.
[33] Doege C, Pfeifer MT, Luedde M, et al. Association between gout and epilepsy in adults-a retrospective cohort study with 244,964 primary care outpatients[J]. Seizure, 2023, 109: 34-37. doi:10.1016/j.seizure.2023.05.009
[34] Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4): 486-496.
[35] Atkins JL, Jylhävä J, Pedersen NL, et al. A genome-wide association study of the frailty index highlights brain pathways in ageing[J]. Aging Cell, 2021, 20(9): e13459. doi:10.1111/acel.13459
[36] Tang P, Guo X, Chong L, et al. Mendelian randomization study shows a causal effect of asthma on epilepsy risk[J]. Front Immunol, 2023, 14: 1071580. doi:10.3389/fimmu.2023.1071580
[37] Auton A, Brooks LD, Durbin RM, et al. A global refe-rence for human genetic variation[J]. Nature, 2015, 526(7571): 68-74.
[38] Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies[J]. Int J Epidemiol, 2011, 40(3): 755-764.
[39] Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665.
[40] Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525.
[41] Verbanck M, Chen CY, Nesle B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698.
[42] Moskalev AA, Shaposhnikov MV, Plyusnina EN, et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria[J]. Ageing Res Rev, 2013, 12(2): 661-684.
[43] Cawthon RM, Smith KR, OBrien E, et al. Association between telomere length in blood and mortality in people aged 60 years or older[J]. Lancet, 2003, 361(9355): 393-395.
[44] Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates[J]. Mol Cell, 2013, 49(2): 359-367.
[45] Hashmi SA, Sachdeva S, Sindhu U, et al. The implications of frailty in older adults with epilepsy[J]. Epilepsia Open, 2024, 9(6): 2128-2143.
[46] Das C, Tyler JK. Histone exchange and histone modifications during transcription and aging[J]. Biochim Biophys Acta, 2013, 1819(3-4): 332-342.
[47] Tan CL, Plotkin JL, Ven MT, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice[J]. Science, 2013, 342(6163): 1254-1258.
[48] Eller MM, Zuberi AR, Fu X, et al. Valine and inflammation drive epilepsy in a mouse model of ECHS1 deficiency[J]. bioRxiv, 2024. doi:10.1101/2024.06.13.598697
[49] Jiang R, Noble S, Sui J, et al. Associations of physical frailty with health outcomes and brain structure in 483 033 middle-aged and older adults: a population-based study from the UK Biobank[J]. Lancet Digit Health, 2023, 5(6): e350-e359.
[1] 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102.
[2] 逄锦宏,苏萍,乔俊鹏,陈巧巧,陈学禹,赵颖颖,施婕,孙晓茹,李秋春,何蕊言,范轶欧,迟蔚蔚. 老年人群可改变心血管危险因素聚集模式与脑卒中的关联[J]. 山东大学学报 (医学版), 2025, 63(9): 11-19.
[3] 王雪梅,杨豪,宋洋,程世超,张婷婷,王艳春. 抗糖尿病药物与女性恶性肿瘤的因果关联:一项两样本孟德尔随机化分析[J]. 山东大学学报 (医学版), 2025, 63(6): 67-77.
[4] 黄馨,王梦雪,付书璠,张琦悦,徐力. 代谢综合征及其组分与消化系统恶性肿瘤的因果关联:两样本孟德尔随机化研究[J]. 山东大学学报 (医学版), 2025, 63(5): 86-94.
[5] 王小磊,方骏,王安,朱武晖,史光军. 两样本孟德尔随机化分析肠道菌群与肝外胆管癌的因果关系[J]. 山东大学学报 (医学版), 2025, 63(4): 44-50.
[6] 李建锋,张展,丁新华,高奋堂,何勤利,谢萍. 欧洲人群饮食因素与认知功能障碍关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2025, 63(4): 36-43.
[7] 杨慧,苏士晶,李芬. 基于双向孟德尔随机化法探讨组织蛋白酶与衰弱的因果关联[J]. 山东大学学报 (医学版), 2025, 63(2): 67-76.
[8] 常宇,胡云峰,王会丰,郭静,张跳,郝雅琴,刘雨. 阑尾切除术与结直肠癌发病风险关联的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2025, 63(2): 77-83.
[9] 袁宗怀,潘广晔,迟曰梅,安传国,张永刚. 孟德尔随机化分析低级别浆液性卵巢癌与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2025, 63(1): 99-107.
[10] 张展,李建锋,李燕玲,王博雯,昂文成林龙珠,王鑫,张小明,谢萍. 饮食因素与子痫前期因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2024, 62(8): 59-66.
[11] 冯悦,俞一凡,吴思佳,李洪凯,薛付忠. 内脏脂肪组织与肺部疾病的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2024, 62(7): 48-55.
[12] 吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报 (医学版), 2024, 62(5): 54-63.
[13] 吴飞,李清丽,肖振卫. 孟德尔随机化探究细胞因子与慢性肾脏病的因果关系[J]. 山东大学学报 (医学版), 2024, 62(11): 85-95.
[14] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[15] 于晴晴,常开锋,李吉庆,张凯,付苹,刘晓雯,赵英淇,薛付忠. 中老年人群高血压在非甾体抗炎药暴露与心脑血管疾病风险关联中的中介分析[J]. 山东大学学报 (医学版), 2023, 61(8): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!