山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (7): 23-31.doi: 10.6040/j.issn.1671-7554.0.2024.0768
韩觉明,王晖,吴倩,郑慧玲,朱琳
HAN Jueming, WANG Hui, WU Qian, ZHENG Huiling, ZHU Lin
摘要: 目的 评估4-N-乙酰半乳糖氨基转移酶4(β-1, 4-N-acetyl-galactosaminyltransferases Ⅳ, B4GALNT4)在肺腺癌中的作用。 方法 通过肿瘤基因图谱(The Cancer Genome Atlas, TCGA)数据库分析B4GALNT4在肺腺癌中的表达,探讨B4GALNT4与肺腺癌患者预后的关系。应用免疫组化和Western blotting研究B4GALNT4在肺腺癌组织中的表达,通过小干扰RNA瞬时转染在A549和H1299细胞中敲减B4GALNT4并进行功能实验,应用CCK-8、EdU实验检测肺腺癌细胞的增殖潜力。通过细胞划痕实验、Transwell迁移和侵袭实验,检测肺腺癌细胞的迁移和侵袭能力。应用Western blotting探讨B4GALNT4发挥功能的潜在分子机制。 结果 TCGA数据库分析结果显示,与癌旁正常组织相比,B4GALNT4基因在肺腺癌组织中的表达升高(P<0.05),且B4GALNT4高表达与患者的不良预后相关(P<0.01);免疫组化及Western blotting结果显示,肺腺癌组织中B4GALNT4蛋白水平较其癌旁正常组织升高;在A549和H1299细胞系中敲减B4GALNT4会抑制肺腺癌细胞的增殖、迁移和侵袭能力(P<0.05),其机制可能与PI3K/AKT/mTOR通路密切相关。 结论 B4GALNT4在肺腺癌的发展中可能起到促癌基因的作用,该作用可能通过影响PI3K/AKT/mTOR信号通路中关键蛋白的表达水平从而发挥作用。
中图分类号:
| [1] Wang Y, Yan Q, Fan C, et al. Overview and countermeasures of cancer burden in China[J]. Sci China Life Sci, 2023, 66(11): 2515-2526. [2] Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment[J]. Mayo Clin Proc, 2019, 94(8): 1623-1640. [3] Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. [4] Varki A. Biological roles of glycans[J]. Glycobiology, 2017, 27(1): 3-49. [5] Baba H, Kanda M, Sato Y, et al. Expression and malignant potential of B4GALNT4 in esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2020, 27(9): 3247-3256. [6] Fan AY, Zhang YY, Cheng JT, et al. A novel prognostic model for prostate cancer based on androgen biosynthetic and catabolic pathways[J]. Front Oncol, 2022, 12: 950094. doi:10.3389/fonc.2022.950094 [7] Hsu WM, Che MI, Liao YF, et al. B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via βı integrin signaling in neuroblastoma[J]. Am J Pathol, 2011, 179(3): 1394-1404. [8] Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J]. Mol Cancer, 2023, 22(1): 138. doi:10.1186/s12943-023-01827-6 [9] Yu FY, Zhao XY, Li MT, et al. SLITRK6 promotes the progression of lung adenocarcinoma by regulating PI3K/AKT/mTOR signaling and Warburg effect[J]. Apoptosis, 2023, 28(7/8): 1216-1225. [10] Li KY, Quan LL, Huang F, et al. ADAM12 promotes the resistance of lung adenocarcinoma cells to EGFR-TKI and regulates the immune microenvironment by activating PI3K/Akt/mTOR and RAS signaling pathways[J]. Int Immunopharmacol, 2023, 122: 110580. doi:10.1016/j.intimp.2023.110580 [11] Huang SC, Zhao HC, Lou XL, et al. TM6SF1 suppresses the progression of lung adenocarcinoma and M2 macrophage polarization by inactivating the PI3K/AKT/mtor pathway[J]. Biochem Biophys Res Commun, 2024, 718: 149983. doi:10.1016/j.bbrc.2024.149983 [12] Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function[J]. Nat Rev Mol Cell Biol, 2012, 13(7): 448-462. [13] Huang J, Liang JT, Huang HC, et al. Beta1, 4-N-acetylgalactosaminyltransferase III enhances malignant phenotypes of colon cancer cells[J]. Mol Cancer Res, 2007, 5(6): 543-552. [14] Tan ZQ, Jiang YZ, Liang L, et al. Dysregulation and prometastatic function of glycosyltransferase C1GALT1 modulated by cHP1BP3/miR-1-3p axis in bladder cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 228. doi:10.1186/s13046-022-02438-7 [15] Liu SQ, Su YJ, Qin MB, et al. Sphingosine kinase 1 promotes tumor progression and confers malignancy phenotypes of colon cancer by regulating the focal adhesion kinase pathway and adhesion molecules[J]. Int J Oncol, 2013, 42(2): 617-626. [16] 邹瑜琳. 小分子核酸AS-tRF通过靶向B4GALNT4调节内皮细胞炎症的作用和机制 [D]. 青岛: 青岛大学, 2022. [17] Fukushima K, Satoh T, Baba S, et al. Alpha 1, 2-fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer[J]. Glycobiology, 2010, 20(4): 452-460. [18] Adamczyk B, Jin CS, Polom K, et al. Sample handling of gastric tissue and O-glycan alterations in paired gastric cancer and non-tumorigenic tissues[J]. Sci Rep, 2018, 8: 242. doi:10.1038/s41598-017-18299-6 [19] Kitamura N, Guo SC, Sato T, et al. Prognostic significance of reduced expression of beta-N-acetylgalactosaminylated N-linked oligosaccharides in human breast cancer[J]. Int J Cancer, 2003, 105(4): 533-541. [20] Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review[J]. Ann Med, 2014, 46(6): 372-383. [21] Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types[J]. Nature, 2014, 505(7484): 495-501. [22] Turdo A, DAccardo C, Glaviano A, et al. Targeting phosphatases and kinases: how to checkmate cancer[J]. Front Cell Dev Biol, 2021, 9: 690306. doi:10.3389/fcell.2021.690306 [23] Yuan YQ, Long HZ, Zhou ZW, et al. PI3K-AKT-targeting breast cancer treatments: natural products and synthetic compounds[J]. Biomolecules, 2023, 13(1): 93. doi:10.3390/biom13010093 [24] Zhu KR, Wu YQ, He P, et al. PI3K/AKT/mTOR-targeted therapy for breast cancer[J]. Cells, 2022, 11(16): 2508. doi:10.3390/cells11162508 [25] Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer[J]. Nat Rev Cancer, 2002, 2(7): 489-501. [26] Yu L, Wei J, Liu PD. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2022, 85: 69-94. doi:10.1016/j.semcancer.2021.06.019 [27] Zhou BP, Hu MC, Miller SA, et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway[J]. J Biol Chem, 2000, 275(11): 8027-8031. [28] Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer[J]. Oncogene, 2007, 26(9): 1338-1345. [29] Zhang YQ, Ng PK, Kucherlapati M, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations[J]. Cancer Cell, 2017, 31(6): 820-832. [30] Ko JH, Um JY, Lee SG, et al. Conditioned media from adipocytes promote proliferation, migration, and invasion in melanoma and colorectal cancer cells[J]. J Cell Physiol, 2019, 234(10): 18249-18261. |
| [1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
| [2] | 蔡佳莹,王靖婷,王增萍,王璟,郏雁飞,马晓丽. α5-nAChR对慢性应激肺腺癌荷瘤小鼠疑核c-Fos表达的影响[J]. 山东大学学报 (医学版), 2025, 63(4): 69-74. |
| [3] | 张洁,张芳芳,王靖楠,李泽宇,宋颖,李娜. circ_0000144在乳腺癌中的表达及其对乳腺癌细胞增殖、迁移和侵袭能力的影响[J]. 山东大学学报 (医学版), 2025, 63(1): 35-42. |
| [4] | 张学宇,张学海,孙文青,刘晗,姜金波,刘寒,李远,陈晓梅. 重症新型冠状病毒肺炎伴侵袭性肺曲霉病及反复致命性消化道出血1例[J]. 山东大学学报 (医学版), 2024, 62(7): 56-61. |
| [5] | 王靖婷,王璟,鲁艺,李静坦,李强,郏雁飞,马晓丽. α5-nAChR与MHC-I在肺腺癌中的表达及相关性[J]. 山东大学学报 (医学版), 2024, 62(5): 72-78. |
| [6] | 杨闯,张荣雨,宋彬,王程君,赵文,玄甜甜,李际盛. 阿美替尼一线治疗EGFR突变肺腺癌伴大疱性类天疱疮1例并文献复习[J]. 山东大学学报 (医学版), 2024, 62(12): 32-37. |
| [7] | 曹华琳,贾彦召,曲莉,尹昕. CircFAT1调节miR-296-3p/MAPRE1轴对鼻咽癌细胞增殖、凋亡和放疗敏感性的影响[J]. 山东大学学报 (医学版), 2023, 61(9): 38-46. |
| [8] | 杜圣红,李晓梅,陈晨,王玲. 鼻型弥漫大B细胞淋巴瘤合并肺腺癌1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(8): 111-115. |
| [9] | 孟健丽,王庆港. 生物信息学方法探讨VPS72在肺腺/鳞癌中的表达及潜在作用机制[J]. 山东大学学报 (医学版), 2023, 61(8): 40-49. |
| [10] | 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11. |
| [11] | 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10. |
| [12] | 刘士标,张淑君,李培龙,杜鲁涛,王传新. cg20657709位点甲基化对肺腺癌早期诊断的初步探讨[J]. 山东大学学报 (医学版), 2023, 61(4): 18-25. |
| [13] | 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87. |
| [14] | 赵启迪,王凯,赵小刚,闫涛,王亚东,杜贾军. 基于SEER数据库构建并验证IIIB期非小细胞肺癌患者预后模型[J]. 山东大学学报 (医学版), 2023, 61(10): 23-37. |
| [15] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
|
||