您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (7): 23-31.doi: 10.6040/j.issn.1671-7554.0.2024.0768

• 临床医学 • 上一篇    下一篇

B4GALNT4促进肺腺癌细胞增殖、迁移和侵袭能力

韩觉明,王晖,吴倩,郑慧玲,朱琳   

  1. 山东大学第二医院呼吸与危重症医学科, 山东 济南 250031
  • 发布日期:2025-07-08
  • 通讯作者: 王晖. E-mail:wh_1975@126.com

B4GALNT4 promotes proliferation, migration and invasion of lung adenocarcinoma cells

HAN Jueming, WANG Hui, WU Qian, ZHENG Huiling, ZHU Lin   

  1. Department of Pulmonary and Critial Care Medicine, The Second Hospital of Shandong University, Jinan 250031, Shandong, China
  • Published:2025-07-08

摘要: 目的 评估4-N-乙酰半乳糖氨基转移酶4(β-1, 4-N-acetyl-galactosaminyltransferases Ⅳ, B4GALNT4)在肺腺癌中的作用。 方法 通过肿瘤基因图谱(The Cancer Genome Atlas, TCGA)数据库分析B4GALNT4在肺腺癌中的表达,探讨B4GALNT4与肺腺癌患者预后的关系。应用免疫组化和Western blotting研究B4GALNT4在肺腺癌组织中的表达,通过小干扰RNA瞬时转染在A549和H1299细胞中敲减B4GALNT4并进行功能实验,应用CCK-8、EdU实验检测肺腺癌细胞的增殖潜力。通过细胞划痕实验、Transwell迁移和侵袭实验,检测肺腺癌细胞的迁移和侵袭能力。应用Western blotting探讨B4GALNT4发挥功能的潜在分子机制。 结果 TCGA数据库分析结果显示,与癌旁正常组织相比,B4GALNT4基因在肺腺癌组织中的表达升高(P<0.05),且B4GALNT4高表达与患者的不良预后相关(P<0.01);免疫组化及Western blotting结果显示,肺腺癌组织中B4GALNT4蛋白水平较其癌旁正常组织升高;在A549和H1299细胞系中敲减B4GALNT4会抑制肺腺癌细胞的增殖、迁移和侵袭能力(P<0.05),其机制可能与PI3K/AKT/mTOR通路密切相关。 结论 B4GALNT4在肺腺癌的发展中可能起到促癌基因的作用,该作用可能通过影响PI3K/AKT/mTOR信号通路中关键蛋白的表达水平从而发挥作用。

关键词: 4-N-乙酰半乳糖氨基转移酶, 肺腺癌, 增殖, 迁移, 侵袭, PI3K/AKT/mTOR信号通路

Abstract: Objective To evaluate the role of β-1,4-N-acetyl-galactosaminyltransferases Ⅳ(B4GALNT4)in lung adenocarcinoma. Methods The Cancer Genome Atlas(TCGA)database was used to analysis the expression of B4GALNT4 in lung adenocarcinoma, and the relationship between prognosis and the expression level of this gene was explored. Immunohistochemistry and Western blotting were used to detect the expression of B4GALNT4 in lung adenocarcinoma tissues. The functional experiments involved the knockdown of B4GALNT4 in A549 and H1299 cells using transient transfection with small interfering RNA. Subsequently, the proliferative capacity of these lung adenocarcinoma cells was assessed through CCK-8 and EdU assays. Then, cell scratch assay, transwell migration, and invasion assay were utilized to detect the migration and invasion ability of lung adenocarcinoma cells. Western blotting was conducted to uncover the underlying molecular mechanisms in these processes. Results The TCGA database showed that compared with adjacent tissues, the B4GALNT4 gene had significantly higher levels in lung adenocarcinoma tissues (P<0.05), which was correlated with the poor prognosis of patients(P<0.01). Immunohistochemistry and Western blotting showed that B4GALNT4 protein levels were elevated in lung adenocarcinoma tissues compared to adjacent normal tissues. Furthermore, knockdown of B4GALNT4 in A549 and H1299 cell lines significantly inhibited the proliferation, migration, and invasion abilities of lung adenocarcinoma cells(P<0.05), and the mechanism might be closely related to the PI3K/AKT/mTOR pathway. Conclusion B4GALNT4 might play a role as a pro-oncogene in the development of lung adenocarcinoma, and this role might be mediated by affecting the expression levels of key proteins in the PI3K/AKT/mTOR signaling pathway.

Key words: β-1, 4-N-acetylgalactosaminyltransferases, Lung adenocarcinoma, Proliferation, Migration, Invasion, PI3K/AKT/mTOR signaling pathway

中图分类号: 

  • R734
[1] Wang Y, Yan Q, Fan C, et al. Overview and countermeasures of cancer burden in China[J]. Sci China Life Sci, 2023, 66(11): 2515-2526.
[2] Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment[J]. Mayo Clin Proc, 2019, 94(8): 1623-1640.
[3] Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49.
[4] Varki A. Biological roles of glycans[J]. Glycobiology, 2017, 27(1): 3-49.
[5] Baba H, Kanda M, Sato Y, et al. Expression and malignant potential of B4GALNT4 in esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2020, 27(9): 3247-3256.
[6] Fan AY, Zhang YY, Cheng JT, et al. A novel prognostic model for prostate cancer based on androgen biosynthetic and catabolic pathways[J]. Front Oncol, 2022, 12: 950094. doi:10.3389/fonc.2022.950094
[7] Hsu WM, Che MI, Liao YF, et al. B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via βı integrin signaling in neuroblastoma[J]. Am J Pathol, 2011, 179(3): 1394-1404.
[8] Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J]. Mol Cancer, 2023, 22(1): 138. doi:10.1186/s12943-023-01827-6
[9] Yu FY, Zhao XY, Li MT, et al. SLITRK6 promotes the progression of lung adenocarcinoma by regulating PI3K/AKT/mTOR signaling and Warburg effect[J]. Apoptosis, 2023, 28(7/8): 1216-1225.
[10] Li KY, Quan LL, Huang F, et al. ADAM12 promotes the resistance of lung adenocarcinoma cells to EGFR-TKI and regulates the immune microenvironment by activating PI3K/Akt/mTOR and RAS signaling pathways[J]. Int Immunopharmacol, 2023, 122: 110580. doi:10.1016/j.intimp.2023.110580
[11] Huang SC, Zhao HC, Lou XL, et al. TM6SF1 suppresses the progression of lung adenocarcinoma and M2 macrophage polarization by inactivating the PI3K/AKT/mtor pathway[J]. Biochem Biophys Res Commun, 2024, 718: 149983. doi:10.1016/j.bbrc.2024.149983
[12] Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function[J]. Nat Rev Mol Cell Biol, 2012, 13(7): 448-462.
[13] Huang J, Liang JT, Huang HC, et al. Beta1, 4-N-acetylgalactosaminyltransferase III enhances malignant phenotypes of colon cancer cells[J]. Mol Cancer Res, 2007, 5(6): 543-552.
[14] Tan ZQ, Jiang YZ, Liang L, et al. Dysregulation and prometastatic function of glycosyltransferase C1GALT1 modulated by cHP1BP3/miR-1-3p axis in bladder cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 228. doi:10.1186/s13046-022-02438-7
[15] Liu SQ, Su YJ, Qin MB, et al. Sphingosine kinase 1 promotes tumor progression and confers malignancy phenotypes of colon cancer by regulating the focal adhesion kinase pathway and adhesion molecules[J]. Int J Oncol, 2013, 42(2): 617-626.
[16] 邹瑜琳. 小分子核酸AS-tRF通过靶向B4GALNT4调节内皮细胞炎症的作用和机制 [D]. 青岛: 青岛大学, 2022.
[17] Fukushima K, Satoh T, Baba S, et al. Alpha 1, 2-fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer[J]. Glycobiology, 2010, 20(4): 452-460.
[18] Adamczyk B, Jin CS, Polom K, et al. Sample handling of gastric tissue and O-glycan alterations in paired gastric cancer and non-tumorigenic tissues[J]. Sci Rep, 2018, 8: 242. doi:10.1038/s41598-017-18299-6
[19] Kitamura N, Guo SC, Sato T, et al. Prognostic significance of reduced expression of beta-N-acetylgalactosaminylated N-linked oligosaccharides in human breast cancer[J]. Int J Cancer, 2003, 105(4): 533-541.
[20] Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review[J]. Ann Med, 2014, 46(6): 372-383.
[21] Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types[J]. Nature, 2014, 505(7484): 495-501.
[22] Turdo A, DAccardo C, Glaviano A, et al. Targeting phosphatases and kinases: how to checkmate cancer[J]. Front Cell Dev Biol, 2021, 9: 690306. doi:10.3389/fcell.2021.690306
[23] Yuan YQ, Long HZ, Zhou ZW, et al. PI3K-AKT-targeting breast cancer treatments: natural products and synthetic compounds[J]. Biomolecules, 2023, 13(1): 93. doi:10.3390/biom13010093
[24] Zhu KR, Wu YQ, He P, et al. PI3K/AKT/mTOR-targeted therapy for breast cancer[J]. Cells, 2022, 11(16): 2508. doi:10.3390/cells11162508
[25] Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer[J]. Nat Rev Cancer, 2002, 2(7): 489-501.
[26] Yu L, Wei J, Liu PD. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2022, 85: 69-94. doi:10.1016/j.semcancer.2021.06.019
[27] Zhou BP, Hu MC, Miller SA, et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway[J]. J Biol Chem, 2000, 275(11): 8027-8031.
[28] Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer[J]. Oncogene, 2007, 26(9): 1338-1345.
[29] Zhang YQ, Ng PK, Kucherlapati M, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations[J]. Cancer Cell, 2017, 31(6): 820-832.
[30] Ko JH, Um JY, Lee SG, et al. Conditioned media from adipocytes promote proliferation, migration, and invasion in melanoma and colorectal cancer cells[J]. J Cell Physiol, 2019, 234(10): 18249-18261.
[1] 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-.
[2] 蔡佳莹,王靖婷,王增萍,王璟,郏雁飞,马晓丽. α5-nAChR对慢性应激肺腺癌荷瘤小鼠疑核c-Fos表达的影响[J]. 山东大学学报 (医学版), 2025, 63(4): 69-74.
[3] 张洁,张芳芳,王靖楠,李泽宇,宋颖,李娜. circ_0000144在乳腺癌中的表达及其对乳腺癌细胞增殖、迁移和侵袭能力的影响[J]. 山东大学学报 (医学版), 2025, 63(1): 35-42.
[4] 张学宇,张学海,孙文青,刘晗,姜金波,刘寒,李远,陈晓梅. 重症新型冠状病毒肺炎伴侵袭性肺曲霉病及反复致命性消化道出血1例[J]. 山东大学学报 (医学版), 2024, 62(7): 56-61.
[5] 王靖婷,王璟,鲁艺,李静坦,李强,郏雁飞,马晓丽. α5-nAChR与MHC-I在肺腺癌中的表达及相关性[J]. 山东大学学报 (医学版), 2024, 62(5): 72-78.
[6] 杨闯,张荣雨,宋彬,王程君,赵文,玄甜甜,李际盛. 阿美替尼一线治疗EGFR突变肺腺癌伴大疱性类天疱疮1例并文献复习[J]. 山东大学学报 (医学版), 2024, 62(12): 32-37.
[7] 曹华琳,贾彦召,曲莉,尹昕. CircFAT1调节miR-296-3p/MAPRE1轴对鼻咽癌细胞增殖、凋亡和放疗敏感性的影响[J]. 山东大学学报 (医学版), 2023, 61(9): 38-46.
[8] 杜圣红,李晓梅,陈晨,王玲. 鼻型弥漫大B细胞淋巴瘤合并肺腺癌1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(8): 111-115.
[9] 孟健丽,王庆港. 生物信息学方法探讨VPS72在肺腺/鳞癌中的表达及潜在作用机制[J]. 山东大学学报 (医学版), 2023, 61(8): 40-49.
[10] 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11.
[11] 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10.
[12] 刘士标,张淑君,李培龙,杜鲁涛,王传新. cg20657709位点甲基化对肺腺癌早期诊断的初步探讨[J]. 山东大学学报 (医学版), 2023, 61(4): 18-25.
[13] 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87.
[14] 赵启迪,王凯,赵小刚,闫涛,王亚东,杜贾军. 基于SEER数据库构建并验证IIIB期非小细胞肺癌患者预后模型[J]. 山东大学学报 (医学版), 2023, 61(10): 23-37.
[15] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!