您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (5): 72-78.doi: 10.6040/j.issn.1671-7554.0.2024.0061

• 临床医学 • 上一篇    

α5-nAChR与MHC-I在肺腺癌中的表达及相关性

王靖婷,王璟,鲁艺,李静坦,李强,郏雁飞,马晓丽   

  1. 山东第一医科大学附属中心医院基础医学研究中心, 山东 济南 250013
  • 发布日期:2024-05-29
  • 通讯作者: 马晓丽. E-mail:Maxiaoli_jn@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金面上项目(ZR2021MH322)

Expression and correlation of α5-nAChR and MHC-I in lung adenocarcinoma

WANG Jingting, WANG Jing, LU Yi, LI Jingtan, LI Qiang, JIA Yanfei, MA Xiaoli   

  1. Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
  • Published:2024-05-29

摘要: 目的 探讨α5-烟碱型乙酰胆碱受体(alpha5-nicotinic acetylcholine receptor, α5-nAChR)与主要组织相容性复合体Ⅰ类分子(major histocompatibility complex class I molecule, MHC-I)在肺腺癌中的表达及相关性。 方法 TCGA数据库分析CHRNA5(编码α5-nAChR基因)与HLA-B(编码MHC-I基因)在肺腺癌中的表达、相关性及其临床意义。运用免疫组织化学技术检测人肺腺癌临床样本、裸鼠肺腺癌异种移植瘤组织中α5-nAChR与MHC-I的表达及相关性。在人A549细胞、小鼠LLC细胞中,Western blotting检测在α5-nAChR不同表达水平下的FHIT与MHC-I表达及相关性。 结果 数据库分析表明,CHRNA5高表达或HLA-B低表达肺腺癌患者的生存率降低,CHRNA5与HLA-B的表达呈负相关(P<0.05)。α5-nAChR与MHC-I在人肺腺癌、裸鼠肺腺癌异种移植物中的表达呈负相关(P<0.05)。在肺腺癌细胞中,α5-nAChR的表达分别与FHIT、MHC-I的表达呈负相关(P<0.05),FHIT和MHC-I在肺腺癌细胞中的表达呈正相关(P<0.05)。 结论 α5-nAChR与MHC-I的表达呈负相关,并参与肺腺癌的发生。

关键词: α5-烟碱型乙酰胆碱受体, 脆性组氨酸三联体, 主要组织相容性复合体I类分子, 肺腺癌, 相关性

Abstract: Objective To investigate the expression and correlation between alpha5-nicotinic acetylcholine receptor(α5-nAChR)and the major histocompatibility complex class I molecule(MHC-I)in lung adenocarcinoma. Methods TCGA database were used to study the expression, correlation, and clinical significance of encoding α5-nAChR gene(CHRNA5)and encoding MHC-I gene(HLA-B)in lung adenocarcinoma. The expressions of α5-nAChR and MHC-I were tested by immunohistochemistry staining in human lung adenocarcinoma specimans and nude mouse lung adenocarcinoma xenografts tissues. Furthermore, the expression and correlation of FHIT and MHC-I at different expression levels of α5-nAChR were detected by Western blotting in human A549 cells and mice LLC cells. Results Patients with lung adenocarcinoma with high expression of CHRNA5 or low expression of HLA-B had reduced survival, and CHRNA5 was negatively correlated with the expression of HLA-B(P<0.05). The expressions of α5-nAChR and MHC-I were negatively correlated in human lung adenocarcinoma and nude mouse lung adenocarcinoma xenografts tissues(P<0.05). In lung adenocarcinoma cells, the expression of α5-nAChR was negatively correlated with the expressions of FHIT and MHC-I, and the expression of FHIT and MHC-I was positively correlated(P<0.05). Conclusion The expressions of α5-nAChR and MHC-I are negatively correlated and involved in lung adenocarcinogenesis.

Key words: Alpha5-nicotinic acetylcholine receptor, Fragile histidine triad, Major histocompatibility complex class I molecule, Lung adenocarcinoma, Correlation

中图分类号: 

  • R574
[1] Mochizuki A, Shiraishi K, Honda T, et al. Passive smoking-induced mutagenesis as a promoter of lung carcinogenesis[J]. J Thorac Oncol, 2024: S1556-S0864(24)00074-1. doi:10.1016/j.jtho.2024.02.006.
[2] Liao KM, Shu CC, Liang FW, et al. Risk factors for pulmonary tuberculosis in patients with lung cancer: a retrospective cohort study[J]. J Cancer, 2023, 14(4): 657-664.
[3] He ZH, Xu YQ, Rao ZH, et al. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine[J]. Sci Total Environ, 2024, 912: 169604. doi:10.1016/j.scitotenv.2023.169604.
[4] Zhang Q, Jia Y, Pan P, et al. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer[J]. Carcinogenesis, 2022, 43(4): 393-404.
[5] Shulepko MA, Bychkov ML, Shlepova OV, et al. Human secreted protein SLURP-1 abolishes nicotine-induced proliferation, PTEN down-regulation and α7-nAChR expression up-regulation in lung cancer cells[J]. Int Immunopharmacol, 2020, 82: 106303. doi:10.1016/j.intimp.2020.106303.
[6] Chen LS, Hung RJ, Baker T, et al. CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis: a meta-analysis[J]. J Natl Cancer Inst, 2015, 107(5): djv100. doi:10.1093/jnci/djv100.
[7] 贾颖, 祖珊珊, 郏雁飞, 等. CHRNA5基因表达下调对肺癌细胞VEGF表达的影响[J]. 山东大学学报(医学版), 2014, 52(2): 12-15. JIA Ying, ZU Shanshan, JIA Yanfei, et al. Effect of down-regulated CHRNA5 gene expression on VEGF expression of lung cancer[J]. China Industrial Economics, 2014, 52(2): 12-15.
[8] Zhu P, Jin ZX, Kang GY, et al. Alpha5 nicotinic acetylcholine receptor mediated immune escape of lung adenocarcinoma via STAT3/Jab1-PD-L1 signalling[J]. Cell Commun Signal, 2022, 20(1): 121. doi:10.1186/s12964-022-00934-z.
[9] Jiao Y, Kang GY, Pan P, et al. Acetylcholine promotes chronic stress-induced lung adenocarcinoma progression via α5-nAChR/FHIT pathway[J]. Cell Mol Life Sci, 2023, 80(5): 119. doi:10.1007/s00018-023-04742-7.
[10] Niu ZY, Jiang DM, Shen JY, et al. Potential role of the fragile histidine triad in cancer evo-dev[J]. Cancers, 2023, 15(4): 1144. doi:10.3390/cancers15041144.
[11] Pulido M, Chamorro V, Romero I, et al. Restoration of MHC-I on tumor cells by fhit transfection promotes immune rejection and acts as an individualized immunotherapeutic vaccine[J]. Cancers, 2020, 12(6): 1563. doi:10.3390/cancers12061563.
[12] Liu YE, Wang YJ, Yang YR, et al. Emerging phagocytosis checkpoints in cancer immunotherapy[J]. Signal Transduct Target Ther, 2023, 8(1): 104. doi:10.1038/s41392-023-01365-z.
[13] Kobayashi KS, van den Elsen PJ. NLRC5: a key regulator of MHC class I-dependent immune responses[J]. Nat Rev Immunol, 2012, 12(12): 813-820.
[14] Yang S, Tang DF, Zhao YC, et al. Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival[J]. Cancer Immunol Immunother, 2021, 70(10): 2819-2833.
[15] Ouspenskaia T, Law T, Clauser KR, et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer[J]. Nat Biotechnol, 2022, 40(2): 209-217.
[16] Alsharairi NA. Quercetin derivatives as potential therapeutic agents: an updated perspective on the treatment of nicotine-induced non-small cell lung cancer[J]. Int J Mol Sci, 2023, 24(20): 15208. doi:10.3390/ijms242015208.
[17] 段依霜. 吸烟人群相关基因与肺癌发生发展的综述[J]. 实用预防医学, 2024, 31(3): 380-385. DUAN Yishuang. Review on genes related to smoking population and occurrence and development of lung cancer[J]. Practical Preventive Medicine, 2024, 31(3): 380-385.
[18] Alsharairi NA. Insights into the mechanisms of action of proanthocyanidins and anthocyanins in the treatment of nicotine-induced non-small cell lung cancer[J]. Int J Mol Sci, 2022, 23(14): 7905. doi:10.3390/ijms23147905.
[19] Kyte SL, Gewirtz DA. The influence of nicotine on lung tumor growth, cancer chemotherapy, and chemotherapy-induced peripheral neuropathy[J]. J Pharmacol Exp Ther, 2018, 366(2): 303-313.
[20] Romero I, Martinez M, Garrido C, et al. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells[J]. J Pathol, 2012, 227(3): 367-379.
[21] Mineur YS, Soares AR, Etherington IM, et al. Pathophysiology of nAChRs: limbic circuits and related disorders[J]. Pharmacol Res, 2023, 191: 106745. doi:10.1016/j.phrs.2023.106745.
[22] Liao YC, Cheng TC, Tu SH, et al. Tumor targeting and therapeutic assessments of RNA nanoparticles carrying α9-nAChR aptamer and anti-miR-21 in triple-negative breast cancers[J]. Mol Ther Nucleic Acids, 2023, 33: 351-366. doi:10.1016/j.omtn.2023.07.013.
[23] Li Q, Li JT, Wang JT, et al. PLEK2 mediates metastasis and invasion via α5-nAChR activation in nicotine-induced lung adenocarcinoma[J]. Mol Carcinog, 2024, 63(2): 253-265.
[24] Sari G, Rock KL. Tumor immune evasion through loss of MHC class-I antigen presentation[J]. Curr Opin Immunol, 2023, 83: 102329. doi:10.1016/j.coi.2023.102329.
[25] 李慧萍, 徐秀. 免疫分子MHC-Ⅰ在小鼠不同脑区的分布[J]. 复旦学报(医学版), 2021, 48(1): 41-46. LI Huiping, XU Xiu. Expression pattern of MHC-Ⅰ in different brain regions of mouse[J]. Fudan University Journal of Medical Sciences, 2021, 48(1): 41-46.
[26] da Silva IL, Montero-Montero L, Ferreira E, et al. New insights into the role of Qa-2 and HLA-G non-classical MHC-I complexes in malignancy[J]. Front Immunol, 2018, 9: 2894. doi:10.3389/fimmu.2018.02894.
[27] Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation[J]. Front Immunol, 2021, 12: 636568. doi:10.3389/fimmu.2021.636568.
[1] 孟健丽,王庆港. 生物信息学方法探讨VPS72在肺腺/鳞癌中的表达及潜在作用机制[J]. 山东大学学报 (医学版), 2023, 61(8): 40-49.
[2] 杜圣红,李晓梅,陈晨,王玲. 鼻型弥漫大B细胞淋巴瘤合并肺腺癌1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(8): 111-115.
[3] 刘士标,张淑君,李培龙,杜鲁涛,王传新. cg20657709位点甲基化对肺腺癌早期诊断的初步探讨[J]. 山东大学学报 (医学版), 2023, 61(4): 18-25.
[4] 左安力,刘欣怡,郭子涵,蒋云秀,鲁德玕. 免疫球蛋白G4相关性疾病累及胸膜1例报告并文献复习[J]. 山东大学学报 (医学版), 2023, 61(12): 119-124.
[5] 赵启迪,王凯,赵小刚,闫涛,王亚东,杜贾军. 基于SEER数据库构建并验证IIIB期非小细胞肺癌患者预后模型[J]. 山东大学学报 (医学版), 2023, 61(10): 23-37.
[6] 洪慧,张卫海,李惠娴,李伟伟,张金岭. 异时性阑尾印戒细胞癌合并肺腺癌双原发癌1例[J]. 山东大学学报 (医学版), 2022, 60(8): 130-132.
[7] 刘丽雯,马俊,李沛铮,张秀芳,刘艺鸣. 128例帕金森病照料者负担及影响因素[J]. 山东大学学报 (医学版), 2022, 60(4): 45-49.
[8] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[9] 王静,刘粉,曾荣,黄思源,许长娟,梁子婷,董亮. 以胸膜病变为特征的IgG4相关性肺疾病1例[J]. 山东大学学报 (医学版), 2022, 60(3): 114-116.
[10] 高金梅,张向莲,刘铁菊. 血浆D-二聚体与109例膀胱癌中发生31例转移的关联性分析[J]. 山东大学学报 (医学版), 2021, 59(3): 98-102.
[11] 张嘉豪,刘东旭. 70例不同垂直骨面型骨性Ⅱ类错牙合磨牙及基骨横向特征[J]. 山东大学学报 (医学版), 2021, 59(2): 76-82.
[12] 柴小雪,叶辉,吕欣然,丁续超,甄秋来,杜娟,曹莉莉. POU4F3表达对118例肺腺癌患者预后评估及对肺腺癌细胞株迁移的影响[J]. 山东大学学报 (医学版), 2021, 59(11): 8-18.
[13] 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28.
[14] 杨秀婷,刘启功,左萍,刘正湘,左后娟. CD151-MUT突变对肺腺癌细胞A549迁移的影响及机制[J]. 山东大学学报 (医学版), 2020, 58(3): 81-86.
[15] 夏宇,陈任,陈菲,李伯阳,潘新锋,高翔,李程跃,徐凌忠. 2008~2017上海市居民健康素养时序变化与孕产妇及婴幼儿死亡率的相关性[J]. 山东大学学报 (医学版), 2019, 57(12): 97-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!