您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (4): 59-68.doi: 10.6040/j.issn.1671-7554.0.2024.1106

• 基础医学 • 上一篇    

弗林蛋白酶靶向同源性磷酸-张力蛋白调控线粒体自噬及肝纤维化进展

宋彦威1,付振美2,徐静怡1,马铭泽1,孙琳琳3   

  1. 1.山东第一医科大学附属省立医院感染性疾病科, 山东 济南 250021;2.山东第一医科大学附属省立医院医学影像科, 山东 济南 250021;3.山东第一医科大学附属省立医院介入诊疗科, 山东 济南 250021
  • 发布日期:2025-04-08
  • 通讯作者: 孙琳琳. E-mail:sunlinlin850314@126.com
  • 基金资助:
    国家自然科学基金青年项目(NSFC82000579)

Furin regulates mitophagy and liver fibrosis progression through phosphatase and tensin homolog-long in mouse

SONG Yanwei1, FU Zhenmei2, XU Jingyi1, MA Mingze1, SUN Linlin3   

  1. 1. Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China;
    2. Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China;
    3. Department of Interventional Therapy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2025-04-08

摘要: 目的 探讨弗林蛋白酶在肝纤维化发生发展中的调控作用及相关分子机制。 方法 将40只C57小鼠随机分为弗林蛋白酶过表达组和对照组,每组20只,腹腔注射四氯化碳诱导小鼠肝纤维化动物模型,诱导8周。弗林蛋白酶过表达组小鼠在四氯化碳诱导4周后,尾静脉注射弗林蛋白酶过表达转染质粒至实验结束,对照组尾静脉注射无意义对照质粒,观察弗林蛋白酶调控小鼠肝纤维化进展的作用效应;采用Nycodenz密度梯度分离法分离C57小鼠肝脏原代星状细胞并进行体外培养;采用免疫组织化学/免疫荧光染色法检测弗林蛋白酶在肝纤维化/肝硬化组织的表达及定位;采用Western blotting法检测组织及细胞蛋白表达水平;采用CCK8法检测弗林蛋白酶处理后肝星状细胞的增殖活力;采用Transwell法检测不同处理组细胞迁移能力变化;采用流式细胞法及免疫荧光染色法检测不同处理组细胞线粒体膜电位变化。 结果 弗林蛋白酶在肝硬化组织及活化的原代肝星状细胞中呈显著阳性。弗林蛋白酶处理组肝星状细胞活化、增殖及迁移能力显著受到抑制(P<0.05);对照组肝星状细胞活化、增殖以及迁移能力未受影响。弗林蛋白酶处理组肝星状细胞线粒体膜电位显著下降,对照组无明显下降(P<0.05);敲低同源性磷酸酶-张力蛋白(phosphatase and tensin homolog-long, PTEN-L)表达后肝星状细胞线粒体膜电位也显著下降(P<0.05),敲低对照组线粒体膜电位无明显改变。四氯化碳化学诱导实验中,弗林蛋白酶过表达组小鼠肝纤维化病变程度较轻,对照组小鼠出现较严重的肝纤维化组织学改变。 结论 弗林蛋白酶通过靶向作用PTEN-L,增强肝星状细胞线粒体自噬,抑制其活化及小鼠肝纤维化进展。

关键词: 肝星状细胞, 肝纤维化, 弗林蛋白酶, 线粒体自噬, 同源性磷酸酶-张力蛋白

Abstract: Objective To investigate the regulatory role of Furin in the progression of liver fibrosis and the molecular mechanisms involved. Methods Forty C57 mice were randomly divided into the Furin overexpression group and the control group, with 20 mice in each group. The mice were intraperitoneally injected with CCL4 to induce animal models of liver fibrosis for 8 weeks. Four weeks after CCL4 induction, mice in the Furin overexpression group received tail vein injections of Furin expression transfection plasmids until the end of the experiment, while the control group was injected with empty control plasmids. The effect of Furin on the progression of liver fibrosis was investigated. Primary hepatic stellate cells from C57 mice were isolated by the Nycodenz density gradient separation method and cultured in vitro. The expression and localisation of Furin in liver fibrosis/cirrhosis tissues were detected by immunohistochemistry / immunofluorescence staining assay. Protein expression levels in tissues and cells were detected by Western blotting. The proliferation activity of Furin-treated hepatic stellate cells was detected by CCK-8 assay. Changes in cell migration ability of each group by different treatments were detected by Transwell assay. Changes in mitochondrial membrane potential of cells in different treatment groups were detected by flow cytometry and immunofluorescence staining. Results Furin was significantly upregulated in cirrhosis tissues and activated primary hepatic stellate cells. The activation, proliferation and migration abilities of hepatic stellate cells in the Furin treatment group were significantly inhibited(P<0.05), while those in the control group were not affected. The mitochondrial membrane potential of hepatic stellate cells in the Furin treatment group was significantly decreased, while that in the control group was not significantly changed(P<0.05). The mitochondrial membrane potential of stellate cells also decreased significantly in PTEN-L knockdown experiments(P<0.05), while there were no significant changes in the control group. In CCl4-induced liver fibrosis mice, the severity of liver fibrosis was milder in Furin overexpression group mice, while the control group mice showed more severe histological changes of liver fibrosis. Conclusion Furin targets PTEN-L to enhance hepatic stellate cell mitophagy and inhibit hepatic stellate cell activation and progression of liver fibrosis in mice.

Key words: Hepatic stellate cells, Liver fibrosis, Furin, Mitophagy, Phosphatase and tensin homolog-long

中图分类号: 

  • R575
[1] Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. doi:10.1016/j.mam.2018.09.002
[2] Park J, Kwon HJ, Sohn W, et al. Risk of liver fibrosis in patients with prediabetes and diabetes mellitus[J]. PLoS One, 2022, 17(6): e0269070.
[3] Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: the major impact of China[J]. Hepatology, 2014, 60(6): 2099-2108.
[4] 李亚琦, 张荣花, 刘雨潭, 等. miR-194-5p通过Wnt5a抑制肝星状细胞活化[J]. 河北大学学报(自然科学版), 2023, 43(2): 179-187. LI Yaqi, ZHANG Ronghua, LIU Yutan, et al. MiR-194-5p inhibits hepatic stellate cell activation through Wnt5a[J]. Journal of Hebei University(Natural Science Edition), 2023, 43(2): 179-187.
[5] 肖政华, 石以石则, 杨庆万, 等. 基于Wnt/β-catenin信号通路研究扶肝化纤汤抑制HSC-T6活化的作用[J]. 山东大学学报(医学版), 2023, 61(6): 41-46. XIAO Zhenghua, SHI Yishize, YANG Qingwan, et al. Mechanism of fugan huaqian decoction inhibiting HSC-T6 activation via Wnt/β-catenin signaling pathway[J]. Journal of Shandong University(Health Sciences), 2023, 61(6): 41-46.
[6] 贾琳, 孙峰, 董琪琪, 等. YTHDF1调控Fis1对肝星状细胞活化、增殖及迁移能力的影响[J]. 安徽医科大学学报, 2025, 60(1): 49-58. JIA Lin, SUN Feng, DONG Qiqi, et. al, YTHDF1 Regulates the effect of fis1 on the activation, proliferation and migration of hepatic sellate cells[J]. Acta Universitatis Medicinalis Anhui, 2025, 60(1): 49-58.
[7] 劳慧霞, 吴姗姗, 王振常, 等. 柔肝化纤颗粒依赖miR-135a/FOXO1通路调控线粒体自噬抑制大鼠肝纤维化进程[J]. 世界科学技术-中医药现代化, 2024, 26(4): 957-964.
[8] Datta S, Cano M, Satyanarayana G, et al. Mitophagy initiates retrograde mitochondrial-nuclear signaling to guide retinal pigment cell heterogeneity[J]. Autophagy, 2023, 19(3): 966-983.
[9] Dou SD, Zhang JN, Xie XL, et al. MitoQ inhibits hepatic stellate cell activation and liver fibrosis by enhancing PINK1/parkin-mediated mitophagy[J]. Open Med(Wars), 2021, 16(1): 1718-1727.
[10] 曾小晏, 曾子键, 张子欣, 等. 线粒体自噬调节肝纤维化的研究进展[J]. 肝脏, 2024, 29(11): 1315-1318. ZENG Xiaoyan, ZENG Zijian, ZHANG Zixin, et al, Research progress on mitochondrial autophagy regulating liver fibrosis[J]. Chinese Hepatology, 2024, 29(11): 1315-1318.
[11] Eldeeb MA, Esmaili M, Hassan M, et al. The role of PTEN-L in modulating PINK1-parkin-mediated mitophagy[J]. Neurotox Res, 2022, 40(4): 1103-1114.
[12] Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/parkin mitophagy[J]. Trends Cell Biol, 2016, 26(10): 733-744.
[13] 许允, 李异. PINK1/Parkin介导的线粒体自噬在异烟肼诱导的肝细胞损伤中的作用[J]. 中南大学学报(医学版), 2022, 47(9): 1200-1207. XU Yun, LI Yi. Regulatory effect of PINK1/Parkin axis on mitophagy in isoniazide-induced hepatocellular injury[J]. Journal of Central South University(Medical Science), 2022, 47(9): 1200-1207.
[14] 于生友. PTEN介导的PINK1/Parkin信号通路在肾小球足细胞线粒体功能障碍中的作用[D]. 广州: 南方医科大学, 2021.
[15] Choi A, Kots ED, Singleton DT, et al. Analysis of the molecular determinants for furin cleavage of the spike protein S1/S2 site in defined strains of the prototype coronavirus murine hepatitis virus(MHV)[J]. Virus Res, 2024, 340: 199283. doi:10.1016/j.virusres.2023.199283
[16] Poyil PK, Siraj AK, Padmaja D, et al. Overexpression of the pro-protein convertase furin predicts prognosis and promotes papillary thyroid carcinoma progression and metastasis through RAF/MEK signaling[J]. Mol Oncol, 2023, 17(7): 1324-1342.
[17] 张欣, 来春林. 前蛋白转化酶在脂质代谢中作用的研究进展[J]. 中西医心脑血管杂志, 2022, 20(6): 1029-1031.
[18] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[19] Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair: immune regulation of wound healing in a solid organ[J]. Nat Rev Immunol, 2014, 14: 181-194. doi:10.1038/nri3623
[20] Boursier J, Canivet CM, Costentin C, et al. Impact of type 2 diabetes on the accuracy of noninvasive tests of liver fibrosis with resulting clinical implications[J]. Clin Gastroenterol Hepatol, 2023, 21(5): 1243-1251.
[21] Li Y, Li C, Xiong Y, et al. Didymin ameliorates liver fibrosis by alleviating endoplasmic reticulum stress and glycerophospholipid metabolism: based on transcriptomics and metabolomics[J]. Drug Des Devel Ther, 2022, 16: 1713-1729. doi:10.2147/dDDT.s351092
[22] Mederacke I, Hsu CC, Troeger JS, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology[J]. Nat Commun, 2013, 4: 2823. doi:10.1038/ncomms3823
[23] Coppola I, Brouwers B, Meulemans S, et al. Differential effects of Furin deficiency on insulin receptor processing and glucose control in liver and pancreatic β cells of mice[J]. Int J Mol Sci, 2021, 22(12): 6344.
[24] Solovyeva NI, Gureeva TA, Timoshenko OS, et al. Furin as proprotein convertase and its role in normal and pathological biological processes[J]. Biochem Mosc Suppl Ser B Biomed Chem, 2017, 11(2): 87-100.
[25] Molloy SS, Bresnahan PA, Leppla SH, et al. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves Anthrax toxin protective antigen[J]. J Biol Chem, 1992, 267(23): 16396-16402.
[26] Hatsuzawa K, Murakami K, Nakayama K. Molecular and enzymatic properties of furin, a Kex2-like endoprotease involved in precursor cleavage at Arg-X-Lys/Arg-Arg sites[J]. J Biochem, 1992, 111(3): 296-301.
[27] Urban D, Lorenz J, Meyborg H, et al. Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor[J]. J Biochem, 2013, 153(2): 197-207.
[28] van Kerkhof P, Kralj T, Spanevello F, et al. RSPO3 Furin domain-conjugated liposomes for selective drug delivery to LGR5-high cells[J]. J Control Release, 2023, 356: 72-83. doi:10.1016/j.jconrel.2023.02.025
[29] Li D, Liu X, Zhang L, et al. COVID-19 disease and malignant cancers: the impact for the furin gene expression in susceptibility to SARS-CoV-2[J]. Int J Biol Sci, 2021, 17(14): 3954-3967.
[30] Chen CL, Gupta P, Parashar D, et al. ERBB3-induced furin promotes the progression and metastasis of ovarian cancer via the IGF1R/STAT3 signaling axis[J]. Oncogene, 2020, 39: 2921-2933. doi:10.1038/s41388-020-1194-7
[31] He ZS, Thorrez L, Siegfried G, et al. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer[J]. Oncogene, 2020, 39: 3571-3587. doi:10.1038/s41388-020-1238-z
[32] Yang Y, He MQ, Tian X, et al. Transgenic overexpression of furin increases epileptic susceptibility[J]. Cell Death Dis, 2018, 9: 1058. doi:10.1038/s41419-018-1076-x
[33] Chen Z, Lu S, Xu M, et al. Role of miR-24, furin, and transforming growth factor-β1 signal pathway in fibrosis after cardiac infarction[J]. Med Sci Monit, 2017, 23: 65-70. doi:10.12659/msm.898641
[34] Lee JH, Seo KH, Yang JH, et al. CCCP induces hepatic stellate cell activation and liver fibrogenesis via mitochondrial and lysosomal dysfunction[J]. Free Radic Biol Med, 2024, 225: 181-192. doi:10.1016/j.freeradbiomed.2024.10.259
[35] Ding Q, Xie XL, Wang MM, et al. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis[J]. Exp Mol Med, 2019, 51: 1-13. doi:10.1038/s12276-018-0199-6
[36] Mary A, Eysert F, Checler F, et al. Mitophagy in Alzheimers disease: molecular defects and therapeutic approaches[J]. Mol Psychiatry, 2023, 28(1): 202-216.
[37] Long M, McWilliams TG. Lipid droplets promote efficient mitophagy[J]. Autophagy, 2023, 19(2): 724-725.
[38] Zhang Y, Fang Q, Wang H, et al. Increased mitophagy protects cochlear hair cells from aminoglycoside-induced damage[J]. Autophagy, 2023, 19(1): 75-91.
[39] Shen ZF, Li L, Zhu XM, et al. Current opinions on mitophagy in fungi[J]. Autophagy, 2023, 19(3): 747-757.
[40] Sellars E, Gabra M, Salmena L. The complex landscape of PTEN mRNA regulation[J]. Cold Spring Harb Perspect Med, 2020, 10(6): a036236.
[41] Wang M, Pan Z, Chu X, et al. Chemotherapy-induced PTEN-L secretion promotes the selection of PTEN-deficient tumor cells[J]. J Exp Clin Cancer Res, 2024, 43(1): 140.
[42] Wang L, Wang J, Tang Y, et al. PTEN-L puts a brake on mitophagy[J]. Autophagy, 2018, 14(11): 2023-2025.
[1] 肖政华,石以石则,杨庆万,李婷婷,李珊珊,钟燕. 基于Wnt/β-catenin信号通路研究扶肝化纤汤抑制HSC-T6活化的作用[J]. 山东大学学报 (医学版), 2023, 61(6): 41-46.
[2] 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27.
[3] 肖政华,杨辉,雷伟,杨君,易旭,谭敏敏. 扶肝化纤汤对肝纤维化大鼠TGF-β1/Smad信号通路的影响[J]. 山东大学学报 (医学版), 2019, 57(6): 51-60.
[4] 熊超,刘力,冯建国,魏继承. 七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 25-30.
[5] 展凤霞,丁娟,马蓓蕾,王谦. 雌二醇对Th1细胞极化与肝纤维化形成的影响[J]. 山东大学学报(医学版), 2016, 54(8): 64-68.
[6] 赵雪莲, 于君, 谢兆宏, 曹彦军, 刘震, 王晓, 徐琳琳, 杨慧, 郑晓磊, 沈阳, 毕建忠. 线粒体自噬在阿尔茨海默病细胞模型中的作用机制[J]. 山东大学学报(医学版), 2015, 53(10): 1-5.
[7] 欧阳兵, 彭忠田, 王培. 大麻素受体1与FAK在血吸虫肝纤维化小鼠肝组织中的表达[J]. 山东大学学报(医学版), 2014, 52(9): 11-14.
[8] 刘伟1,丁艾昆2,李程2,单容3,王昌源1,2. 慢性乙型肝炎疾病进展中瞬时弹性波检测的意义及其影响因素[J]. 山东大学学报(医学版), 2014, 52(1): 85-88.
[9] 杨艳1,阎春英1,陈旭2,林晓燕3,王来城4,石军1. 氯沙坦对实验性肝纤维化模型大鼠的作用[J]. 山东大学学报(医学版), 2013, 51(3): 27-31.
[10] 赵正斌1,薛双林2,张立婷1,李俊峰1,赵荣荣1,周海莲3,陈红1. 原花青素对瘦素诱导肝星状细胞增殖和TIMP-1产生的影响[J]. 山东大学学报(医学版), 2012, 50(7): 46-.
[11] 杨燕1,王晓花2,范晓胜3. 葡萄籽原花青素预防大鼠肝纤维化的实验研究[J]. 山东大学学报(医学版), 2012, 50(3): 11-.
[12] 李建志1,李洁1,熊春梅1,张梅芳1,郑雪2,张灵云2,张国全2,孙爱华1,单容1 . Fibroscan测定与超声影像学检查在诊断慢性乙肝相关肝纤维化中的价值[J]. 山东大学学报(医学版), 2012, 50(10): 115-.
[13] 董向前1,段丽平1,梁兵1,李树安1,柳波2,詹尔益2,宋精玲3,杨志伟4,晋德光4,马岚青1. 人参皂苷Rg1和Rb1抗肝纤维化的体视学研究[J]. 山东大学学报(医学版), 2012, 50(1): 85-.
[14] 曾兆清1,2,杜文军2,史兆章2,徐伟3,刘倩雯3,陈士俊4. 白细胞介素-17对肝星状细胞增殖及细胞周期的影响[J]. 山东大学学报(医学版), 2011, 49(4): 21-24.
[15] 单容1,王爱光2. Fibroscan在乙肝相关肝纤维化诊断中的临床应用研究[J]. 山东大学学报(医学版), 2010, 48(9): 93-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!