山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (4): 116-121.doi: 10.6040/j.issn.1671-7554.0.2024.1416
• 综述 • 上一篇
杨卫芳1,徐宏1,刘元涛2,赵蕙琛1
YANG Weifang1, XU Hong1, LIU Yuantao2, ZHAO Huichen1
摘要: Graves病是最常见的自身免疫性甲状腺功能亢进症,其50%以上的高复发率显著影响患者的生活质量。促甲状腺激素受体抗体(thyrotrophin receptor antibody, TRAb)是Graves病的特异性生物标志物,影响疾病的诊断、治疗和复发预测。TRAb的水平与疾病活动性及复发风险高度相关,是治疗停药的主要指标之一。然而,TRAb参与Graves病发病的具体机制及其临床应用仍存在许多问题。本文旨在系统探讨TRAb在Graves病复发中的指导作用,分析其可能机制及临床意义,以期为临床实践提供参考。
中图分类号:
| [1] Kaplowitz PB, Vaidyanathan P. Update on pediatric hyperthyroidism[J]. Curr Opin Endocrinol Diabetes Obes, 2020, 27(1): 70-76. [2] Tsukada D, Iizuka K, Takao K, et al. Graves disease with thymic hyperplasia: the response of the thyroid function, thyrotropin receptor autoantibody, and thymic size to thiamazole treatment[J]. Intern Med, 2022, 61(18): 2753-2757. [3] Darouassi Y, Hanine MA, Aljalil A, et al. Surgical management of hyperthyroidism: about 60 cases[J]. Pan Afr Med J,2018, 31:43. doi: 10.11604/pamj.2018.31.43.16695 [4] Lee JK, Kong Y, Choi JB, et al. TSH receptor antibody as a predictor of difficult robotic thyroidectomy in patients with Graves disease[J]. J Rob Surg, 2024, 18(1): 108. [5] Kumata K, Nagata K, Matsushita M, et al. Thyrotropin receptor antibody(TRAb)-IgM levels are markedly higher than TRAb-IgG levels in Graves disease patients and controls, and TRAb-IgM production is related to epstein-barr virus reactivation[J]. Viral Immunol, 2016, 29(8): 459-463. [6] Suzuki N, Inoue K, Yoshimura R, et al. The mediation role of thyrotropin receptor antibody in the relationship between age and severity of hyperthyroidism in Graves disease[J]. Thyroid, 2022, 32(10): 1243-1248. [7] Edo N, Kawakami K, Fujita Y, et al. Exosomes expressing thyrotropin receptor attenuate autoantibody-mediated stimulation of cyclic adenosine monophosphate production[J]. Thyroid, 2019, 29(7): 1012-1017. [8] Paik JS, Kim SE, Kim JH, et al. Insulin-like growth factor-1 enhances the expression of functional TSH receptor in orbital fibroblasts from thyroid-associated ophthalmopathy[J]. Immunobiology, 2020, 225(2): 151902. doi:10.1016/j.imbio.2019.151902 [9] Jin M, Kim CA, Jeon MJ, et al. Dynamic risk model for the medical treatment of Graves hyperthyroidism according to treatment duration[J]. Endocrinol Metab(Seoul), 2024, 39(4): 579-589. [10] Dwivedi SN, Kalaria T, Buch H. Thyroid autoantibodies[J]. J Clin Pathol, 2023, 76(1): 19-28. [11] Struja T, Jutzi R, Imahorn N, et al. Comparison of five TSH-receptor antibody assays in Graves disease: results from an observational pilot study[J]. BMC Endocr Disord, 2019, 19(1): 38. doi:10.1186/s12902-019-0363-6 [12] Moledina M, Roos J, Murthy R. Thyrotropin receptor autoantibody assessment in thyroid eye disease: does the assay type matter?[J]. Korean J Ophthalmol, 2023, 37(2): 147-156. [13] Grubczak K, Starosz A, Stozek K, et al. Regulatory B cells involvement in autoimmune phenomena occurring in pediatric Graves disease patients[J]. Int J Mol Sci, 2021, 22(20): 10926. [14] Wolstenhulme F, Bibby I, Cole M, et al. Graves-PCD: protocol for a randomised, dose-finding, adaptive trial of the plasma cell-depleting agent daratumumab in severe Graves disease[J]. BMJ Open, 2024, 14(6): e079158. [15] Kahaly GJ, Bartalena L, Hegedüs L, et al. 2018 European thyroid association guideline for the management of Graves hyperthyroidism[J]. Eur Thyroid J, 2018, 7(4): 167-186. [16] Ross DS, Burch HB, Cooper DS, et al. 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis[J]. Thyroid, 2016, 26(10): 1343-1421. [17] 中华医学会内分泌学分会,中国医师协会内分泌代谢科医师分会,中华医学会核医学分会,等. 中国甲状腺功能亢进症和其他原因所致甲状腺毒症诊治指南[J].中华内分泌代谢杂志, 2022, 38(8): 700-748. [18] Park S, Song EY, Oh HS, et al. When should antithyroid drug therapy to reduce the relapse rate of hyperthyroidism in Graves disease be discontinued?[J]. Endocrine, 2019, 65(2): 348-356. [19] Park SY, Kim BH, Kim M, et al. The longer the antithyroid drug is used, the lower the relapse rate in Graves disease: a retrospective multicenter cohort study in Korea[J]. Endocrine, 2021, 74(1): 120-127. [20] Liu X, Qiang W, Liu X, et al. A second course of antithyroid drug therapy for recurrent Graves disease: an experience in endocrine practice[J]. Eur J Endocrinol, 2015, 172(3): 321-326. [21] Azizi F, Amouzegar A, Tohidi M, et al. Increased remission rates after long-term methimazole therapy in patients with Graves disease: results of a randomized clinical trial[J]. Thyroid, 2019, 29(9): 1192-1200. [22] Bandai S, Okamura K, Fujikawa M, et al. The long-term follow-up of patients with thionamide-treated Graves hyperthyroidism[J]. Endocr J, 2019, 66(6): 535-545. [23] Laurberg P, Berman DC, Andersen S, et al. Sustained control of Graves hyperthyroidism during long-term low-dose antithyroid drug therapy of patients with severe Graves orbitopathy[J]. Thyroid, 2011, 21(9): 951-956. [24] Song Q, Fang Z, Wang S, et al. Correlation between TRAb and early onset hypothyroidism after 131I treatment for Graves disease[J]. Horm Metab Res, 2024, 56(11): 779-784. [25] Listewnik MH, Piwowarska-Bilska H, Jasiakiewicz K, et al. Influence of high tissue-absorbed dose on anti-thyroid antibodies in radioiodine therapy of Graves disease patients[J]. Adv Clin Exp Med, 2021, 30(9): 913-921. [26] Lu L, Gao C, Zhang N. Age moderates the associations between TRAbs, free T3 and outcomes of Graves disease patients with radioactive iodine treatment[J]. Clin Endocrinol(Oxf), 2021, 94(2): 303-309. [27] Masahito, Katahira, Hidetada, et al. Critical amino acid variants in HLA-DRB1 allotypes in the development of Graves disease and Hashimotos thyroiditis in the Japanese population[J]. Hum Immunol, 2021, 82(4):226-231. [28] Zheng H, Xu J, Chu Y, et al. A global regulatory network for dysregulated gene expression and abnormal metabolic signaling in immune cells in the microenvironment of Graves disease and hashimotos thyroiditis[J]. Front Immunol, 2022, 13: 879824. doi: 10.3389/fimmu.2022.879824 [29] Tajiri J. Radioactive iodine therapy for goitrous Hashimotos thyroiditis[J]. J Clin Endocrinol Metab, 2006, 91(11): 4497-4500. [30] Vassallo A, Ferrari F, di Filippo L, et al. Transition from hashimoto thyroiditis to Graves disease: an unpredictable change? [J]. Endocrine, 2024, 84(2): 541-548. [31] Rotondi M, Bendotti G, Croce L, et al. A unique presentation of Graves disease in a pregnant woman with severe hypothyroidism[J]. Gynecol Endocrinol, 2022, 38(8): 697-701. [32] 《孕产期甲状腺疾病防治管理指南》编撰委员会, 中华医学会内分泌学分会, 中华预防医学会妇女保健分会. 孕产期甲状腺疾病防治管理指南[J]. 中国妇幼卫生杂志, 2022, 13(4): 1-15. [33] Stagnaro-Green A. Approach to the patient with postpartum thyroiditis[J]. J Clin Endocrinol Metab, 2012, 97(2): 334-342. [34] Pizzocaro A, Colombo P, Vena W, et al. Outcome of SARS-COV-2-related thyrotoxicosis in survivors of COVID-19: a prospective study[J]. Endocrine, 2021, 73(2):255-260. [35] Zettinig G. Thyroid and SARS-CoV-2[J]. J Klin Endokrinol Stoffwechs, 2022, 15(3): 100-104. [36] Sousa B, Pestana Santos C, Ferreira AG,et al. Graves disease caused by SARS-CoV-2 infection[J]. Eur J Case Rep Intern Med, 2022, 9(7): 003470. [37] Rotondi M, Coperchini F, Ricci G, et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis[J]. J Endocrinol Invest, 2021, 44(5):1085-1090. [38] Chaker L, Cooper DS, Walsh JP, et al. Hyperthyroidism[J]. Lancet, 2024, 403(10428): 768-780. [39] Xia N, Ye X, Hu X, et al. Simultaneous induction of Graves hyperthyroidism and Graves ophthalmopathy by TSHR genetic immunization in BALB/c mice[J]. PLoS One, 2017, 12(3): e0174260. [40] Lane LC, Cheetham TD, Perros P, et al. New therapeutic horizons for Graves hyperthyroidism[J]. Endocr Rev, 2020, 41(6): 873-884. |
| [1] | 张莹 王宏伟 王慧 陈福琴. Graves病复发患者外周血中转化生长因子β1水平的变化[J]. 山东大学学报(医学版), 2209, 47(6): 80-. |
| [2] | 郭姝画,樊扬,田风,王传新,杜鲁涛,李培龙,郭兴,徐硕. 微原纤维相关蛋白3在调控胶质瘤干细胞间充质表型转化中的作用[J]. 山东大学学报 (医学版), 2024, 62(6): 9-16. |
| [3] | 魏闫若雪,李梓绮,刘春铖,刘晓晗,赵然,刘玉昆. 结直肠癌中SP1的瘤内异质性表达及其临床意义[J]. 山东大学学报 (医学版), 2024, 62(5): 89-94. |
| [4] | 刘春铖,刘晓晗,魏闫若雪,李梓绮,刘玉昆,赵然. 结直肠癌中含溴结构域蛋白9的亚细胞定位模式及其临床意义[J]. 山东大学学报 (医学版), 2024, 62(4): 24-30. |
| [5] | 杨雪彦,吴寅平,吕丽,赵泽华,马行宇,李凤彩,王凯,范玉琛. 单核细胞与淋巴细胞比值动态变化对慢加急性乙型肝炎肝衰竭预后的诊断价值[J]. 山东大学学报 (医学版), 2024, 62(3): 61-69. |
| [6] | 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68. |
| [7] | 石军,牛子捷,王军,马丽晶,奚春花,肖洋. 幼年型复发性呼吸道乳头状瘤病肺部播散的临床特点及麻醉要点[J]. 山东大学学报 (医学版), 2024, 62(12): 82-89. |
| [8] | 宋兆录,董正璇,彭传真,黄彩娜,胡克清,黄永胜,阎磊. 肾透明细胞癌中预后相关RNA编辑位点的筛选[J]. 山东大学学报 (医学版), 2023, 61(9): 69-78. |
| [9] | 唐小雨,王云彦,史有奎,王敏. 肉芽肿性多血管炎继发肥厚性硬脑膜炎1例[J]. 山东大学学报 (医学版), 2023, 61(5): 122-124. |
| [10] | 李晴,张安娜,杜艳圣,刁久洲,崔若瑾,付鹏蕊,岳欣毅,周庆博. 47例单个脊髓炎性脱髓鞘病灶转化的影响因素[J]. 山东大学学报 (医学版), 2023, 61(5): 37-43. |
| [11] | 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67. |
| [12] | 胡立勇,钟浩,房娟娟,国巍,张雨露,范医东. 基于数据库分析CCR基因对肾透明细胞癌预后的预测价值[J]. 山东大学学报 (医学版), 2023, 61(4): 49-55. |
| [13] | 李兆辉,李亮,周飞,郑超,周文重,王斐,余之刚. 乳腺炎性肌纤维母细胞瘤1例及文献回顾[J]. 山东大学学报 (医学版), 2023, 61(4): 121-124. |
| [14] | 陈蓉,杨越,杨智翔,苏亚英,庞智英,王大伟,崔书君,杨飞. 基于CT纹理分析预测急性肺栓塞短期预后[J]. 山东大学学报 (医学版), 2023, 61(12): 78-85. |
| [15] | 华月帆,何珂瑶,张家豪,钱梦凡,刘怡文,孔金玉,杨海军,周福有. 具核梭杆菌诱导缺氧诱导因子及血管生成因子高表达对食管鳞癌患者生存预后的影响[J]. 山东大学学报 (医学版), 2023, 61(11): 59-67. |
|
||