山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 1-7.doi: 10.6040/j.issn.1671-7554.0.2025.0529
• 基础医学 •
李观强1,施昱诚1,朱可涵2,胡波1,黄献琛1,孙元1,李笃信2,张喜成1
LI Guanqiang1, SHI Yucheng1, ZHU Kehan2, HU Bo1, HUANG Xianchen1, SUN Yuan1, LI Duxin2, ZHANG Xicheng1
摘要: 目的 基于蜗牛粘液的分离提取、酶解和序列测定,筛选并人工合成活性肽序列,评价其对成纤维细胞增殖、迁移能力的影响。 方法 提取蜗牛粘液蛋白并用胰蛋白酶消化4 h,液相色谱-质谱结合生物信息学分析,筛选具有促进增殖的肽段序列,通过固相合成法制备。经培养人外膜成纤维细胞(human adventitial fibroblasts, HAFs)并用不同浓度的活性肽处理,评估其对细胞增殖、迁移能力的影响。 结果 合成的肽序列为SK-14(N端序列:SSTIFPPTSGGAAK),分子量为1 268 Da。 SK-14能显著促进成纤维细胞增殖(P<0.001)。细胞增殖能力随SK-14质量浓度增加而呈现浓度依赖性增强,增殖能力随SK-14质量浓度升高而显著提高,并在500 μg/mL达平台期。SK-14同样可显著促进HAFs的迁移能力(P<0.001),其作用效果随着SK-14质量浓度递增上升,以1 000 μg/mL的作用最明显。 结论 蜗牛粘液来源的活性肽序列SK-14可促进人成纤维细胞的增殖、迁移能力,可能是蜗牛粘液参与促进伤口愈合的活性成分之一。
中图分类号:
| [1] 刘振中, 姜笃银, 王魏, 等. 转化生长因子-β1噬菌体模拟肽促进成纤维细胞增殖的效果[J]. 山东大学学报(医学版), 2015, 53(3): 50-55. LIU Zhenzhong, JIANG Duyin, WANG Wei, et al. Proliferative effect of TGF-β1 phage model peptide on fibroblasts[J]. Journal of Shandong University(Health Sciences), 2015, 53(3): 50-55. [2] Khavkin J, Ellis DAF. Aging skin: histology, physiology, and pathology[J]. Facial Plast Surg Clin North Am, 2011, 19(2): 229-234. [3] 朱琳, 李薇薇, 刘志凯. 人血管基质片段联合脂肪干细胞促进裸鼠放射性皮肤损伤的愈合[J]. 山东大学学报(医学版), 2017, 55(9): 66-72. ZHU Lin, LI Weiwei, LIU Zhikai. Human stromal vascular fraction combined with adipose stem cells promotes the healing of radiation skin damage in nude mice[J]. Journal of Shandong University(Health Sciences), 2017, 55(9): 66-72. [4] Zhu YS, Lin YZ, Xie SJ, et al. Mapping intellectual structures and research hotspots of chronic wound in global perspective[J]. Regen Ther, 2025, 30: 47-62. doi: 10.1016/j.reth.2025.05.002 [5] Altalbawy FMA, Mukhlif BAM, Hussen A, et al. Regenerative potential of PRP-based scaffolds in chronic wound healing: mechanisms, advances, and therapeutic insights[J]. Regen Ther, 2025, 30: 278-298. doi: 10.1016/j.reth.2025.06.008 [6] 张华宇, 殷思源, 刘健, 等. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报(医学版), 2021, 59(4): 17-27. ZHANG Huayu, YIN Siyuan, LIU Jian, et al. Quantitative proteomic analysis of epidermal stem cells in oxygen-glucose deprivation conditions[J]. Journal of Shandong University(Health Sciences), 2021, 59(4): 17-27. [7] Song JL, Zhao T, Wang CF, et al. Cell migration in diabetic wound healing: molecular mechanisms and therapeutic strategies(Review)[J]. Int J Mol Med, 2025, 56(2): 126. doi: 10.3892/ijmm.2025.5567 [8] Gao HJ, Fang XW, Chen H, et al. Polydopamine-modified collagen membrane loading with platelet-rich plasma for enhancing diabetic wound healing[J]. Biomed Phys Eng Express, 2025, 11(4): 045033. doi: 10.1088/2057-1976/adebf6 [9] Abedin-Do A, Zhang Z, Douville Y, et al. Electrical stimulation promotes the wound-healing properties of diabetic human skin fibroblasts[J]. J Tissue Eng Regen Med, 2022, 16(7): 643-652. [10] Dasari N, Jiang A, Skochdopole A, et al. Updates in diabetic wound healing, inflammation, and scarring[J]. Semin Plast Surg, 2021, 35(3): 153-158. [11] Huang L, Cai HA, Zhang MS, et al. Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis[J]. J Pharmacol Sci, 2021, 147(3): 271-283. [12] Rai V, Moellmer R, Agrawal DK. Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer[J]. Mol Biol Rep, 2023, 50(2): 1913-1929. [13] Mishra R, Singh TG, Bhatia R, et al. Unveiling the therapeutic journey of snail mucus in diabetic wound care[J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(6): 6531-6560. [14] Sarkar P, Iyengar D, Mukhopadhyay K. Emergence of snail mucus as a multifunctional biogenic material for biomedical applications[J]. Acta Biomater, 2025, 200: 21-46. doi: 10.1016/j.actbio.2025.05.006 [15] Alarfaj K, Almatroudi A, Alrumaihi F, et al. Evaluation of the white garden snail(Theba pisana)mucus slime for its efficacy as an antimicrobial agent[J]. J Pure Appl Microbiol, 2024, 18(2): 900-906. [16] Zhu KH, Zhang ZY, Li GQ, et al. Extraction, structure, pharmacological activities and applications of polysaccharides and proteins isolated from snail mucus[J]. Int J Biol Macromol, 2024, 258: 128878. doi: 10.1016/j.ijbiomac.2023.128878 [17] Zhai MZ, Tan HX, Xu AH, et al. Immunomodulatory hydrogel loaded with PD-L1-expressing exosomes reprograms macrophages and accelerates diabetic wound healing[J]. Biomater Adv, 2025, 176: 214362. doi: 10.1016/j.bioadv.2025.214362 [18] Zheng K, Yang ZW, Ba T. Marine bioactive peptides as potential therapeutic agents for wound healing-a review[J]. Ann Med, 2025, 57(1): 2530693. doi: 10.1080/07853890.2025.2530693 [19] Akita S, Akino K, Hirano A. Basic fibroblast growth factor in scarless wound healing[J]. Adv Wound Care(New Rochelle), 2013, 2(2): 44-49. [20] 张雯, 于文慧, 赵钢, 等. 糖尿病创面中“肠-皮肤-表观遗传” 三维调控轴的研究进展[J]. 中国医药导报, 2025, 22(17): 80-86. ZHANG Wen, YU Wenhui, ZHAO Gang, et al. Research progress on three-dimensional regulatory axis of “gut-skin-epigenetic inheritance” in diabetic wound[J]. China Medical Herald, 2025, 22(17): 80-86. [21] Wu MF, Huang JH, Shi JJ, et al. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts in vivo and in vitro[J]. J Ethnopharmacol, 2022, 293: 115321. doi: 10.1016/j.jep.2022.115321 [22] Xia YD, Han BB, Zhang FY, et al. Pae/exo@PF-127 promote diabetic wound healing through miR-424-5p[J]. Phytomedicine, 2025, 142: 156688. doi: 10.1016/j.phymed.2025.156688 [23] Mo JK, Zhang JQ, Meng XB, et al. Inhibition of microRNA-139-5p improves fibroblasts viability and enhances wound repair in diabetic rats through AP-1(c-fos/c-Jun)[J]. Diabetes Metab Syndr Obes, 2025, 18: 237-248. doi: 10.2147/DMSO.S496556 [24] Raffetto JD, Gram CH, Overman KC, et al. Mitogen-activated protein kinase p38 pathway in venous ulcer fibroblasts[J]. Vasc Endovascular Surg, 2008, 42(4): 367-374. [25] Fukui R, Shibata N, Kohbayashi E, et al. Inhibition of smooth muscle cell migration by the p21 cyclin-dependent kinase inhibitor(Cip1)[J]. Atherosclerosis, 1997, 132(1): 53-59. [26] 冼文娇, 梁景南, 卢巍, 等. 微小RNA-199a-3p对小鼠皮肤瘢痕疙瘩成纤维细胞的抑制作用及其机制[J]. 西安交通大学学报(医学版), 2024, 45(6): 934-940. XIAN Wenjiao, LIANG Jingnan, LU Wei, et al. Inhibition of microRNA-199a-3p on mouse skin keloid formation and its mechanism[J]. Journal of Xian Jiaotong University(Medical Sciences), 2024, 45(6): 934-940. [27] Krall JA, Beyer EM, MacBeath G. High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways[J]. PLoS One, 2011, 6(1): e15945. doi: 10.1371/journal.pone.0015945 [28] Bazeer AB, Ekambaram G, Louis LRP, et al. Snail mucus: unlocking a natural powerhouse for dermatological innovation[J]. Arch Dermatol Res, 2024, 317(1): 113. doi: 10.1007/s00403-024-03638-1 |
| [1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
| [2] | 韩觉明,王晖,吴倩,郑慧玲,朱琳. B4GALNT4促进肺腺癌细胞增殖、迁移和侵袭能力[J]. 山东大学学报 (医学版), 2025, 63(7): 23-31. |
| [3] | 张洁,张芳芳,王靖楠,李泽宇,宋颖,李娜. circ_0000144在乳腺癌中的表达及其对乳腺癌细胞增殖、迁移和侵袭能力的影响[J]. 山东大学学报 (医学版), 2025, 63(1): 35-42. |
| [4] | 曹华琳,贾彦召,曲莉,尹昕. CircFAT1调节miR-296-3p/MAPRE1轴对鼻咽癌细胞增殖、凋亡和放疗敏感性的影响[J]. 山东大学学报 (医学版), 2023, 61(9): 38-46. |
| [5] | 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11. |
| [6] | 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10. |
| [7] | 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87. |
| [8] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
| [9] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
| [10] | 覃超群,黄斌,阳芳,王昌明,肖影,黄汉灿,李丽英,高枫. GSK3β/eEF2K信号通过调控自噬参与肺成纤维细胞诱导分化[J]. 山东大学学报 (医学版), 2022, 60(5): 8-15. |
| [11] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
| [12] | 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37. |
| [13] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
| [14] | 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26. |
| [15] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
|
||