您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (11): 1-7.doi: 10.6040/j.issn.1671-7554.0.2025.0529

• 基础医学 •    

蜗牛粘液来源的活性肽SK-14促进成纤维细胞的增殖和迁移

李观强1,施昱诚1,朱可涵2,胡波1,黄献琛1,孙元1,李笃信2,张喜成1   

  1. 1.苏州大学附属第四医院血管外科与介入科, 江苏 苏州 215000;2.苏州大学药学院, 江苏 苏州 215000
  • 发布日期:2025-11-28
  • 通讯作者: 张喜成. E-mail:vasdoc@126.com
  • 基金资助:
    苏州市科技计划项目(SZM2021008);医疗卫生创新研究项目(CXYJ2024B08)

Active peptide SK-14 derived from snail mucus promotes fibroblast proliferation and migration

LI Guanqiang1, SHI Yucheng1, ZHU Kehan2, HU Bo1, HUANG Xianchen1, SUN Yuan1, LI Duxin2, ZHANG Xicheng1   

  1. 1. Department of Vascular Surgery and Intervention, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China;
    2. College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, Jiangsu, China
  • Published:2025-11-28

摘要: 目的 基于蜗牛粘液的分离提取、酶解和序列测定,筛选并人工合成活性肽序列,评价其对成纤维细胞增殖、迁移能力的影响。 方法 提取蜗牛粘液蛋白并用胰蛋白酶消化4 h,液相色谱-质谱结合生物信息学分析,筛选具有促进增殖的肽段序列,通过固相合成法制备。经培养人外膜成纤维细胞(human adventitial fibroblasts, HAFs)并用不同浓度的活性肽处理,评估其对细胞增殖、迁移能力的影响。 结果 合成的肽序列为SK-14(N端序列:SSTIFPPTSGGAAK),分子量为1 268 Da。 SK-14能显著促进成纤维细胞增殖(P<0.001)。细胞增殖能力随SK-14质量浓度增加而呈现浓度依赖性增强,增殖能力随SK-14质量浓度升高而显著提高,并在500 μg/mL达平台期。SK-14同样可显著促进HAFs的迁移能力(P<0.001),其作用效果随着SK-14质量浓度递增上升,以1 000 μg/mL的作用最明显。 结论 蜗牛粘液来源的活性肽序列SK-14可促进人成纤维细胞的增殖、迁移能力,可能是蜗牛粘液参与促进伤口愈合的活性成分之一。

关键词: 蜗牛粘液, 活性肽, 成纤维细胞, 增殖, 迁移

Abstract: Objective To screen and synthesize the active peptide sequence, and to evaluate its effects on the proliferation and migration of fibroblasts based on the isolation, enzymatic digestion and sequencing of snail mucus. Methods Snail mucus protein was extracted and digested with trypsin for 4 h. The peptide sequence with proliferation promotion was screened by liquid chromatography-mass spectrometry and bioinformatics analysis, and then prepared by solid phase synthesis. Human adventitial fibroblasts(HAFs)were cultured and treated with different concentrations of active peptides to evaluate their effects on cell proliferation and migration. Results The synthesized peptide sequence was SK-14(N-terminal sequence: SSTIFPPTSGGAAK), with a molecular weight of 1,268 Da. Compared with the control group, SK-14 could significantly promote fibroblast proliferation at different concentrations(P<0.001). The cell proliferation ability increased in a concentration-dependent manner with the increase of SK-14 concentration. Within the test concentration range, the proliferation ability significantly increased with the increase of drug SK-14 concentration, and reached the plateau at 500 μg/mL. SK-14 can also significantly promote the migration ability of HAFs(P<0.001), and its effect increased with the increase of SK-14 concentration, with the most obvious effect at 1,000 μg/mL in the test concentration range. Conclusion The active peptide SK-14 derived from snail mucus can promote the proliferation and migration of HAFs, which may be one of the active components of snail mucus in promoting wound healing.

Key words: Snail mucus, Active peptides, Fibroblasts, Proliferation, Migration

中图分类号: 

  • R654.4
[1] 刘振中, 姜笃银, 王魏, 等. 转化生长因子-β1噬菌体模拟肽促进成纤维细胞增殖的效果[J]. 山东大学学报(医学版), 2015, 53(3): 50-55. LIU Zhenzhong, JIANG Duyin, WANG Wei, et al. Proliferative effect of TGF-β1 phage model peptide on fibroblasts[J]. Journal of Shandong University(Health Sciences), 2015, 53(3): 50-55.
[2] Khavkin J, Ellis DAF. Aging skin: histology, physiology, and pathology[J]. Facial Plast Surg Clin North Am, 2011, 19(2): 229-234.
[3] 朱琳, 李薇薇, 刘志凯. 人血管基质片段联合脂肪干细胞促进裸鼠放射性皮肤损伤的愈合[J]. 山东大学学报(医学版), 2017, 55(9): 66-72. ZHU Lin, LI Weiwei, LIU Zhikai. Human stromal vascular fraction combined with adipose stem cells promotes the healing of radiation skin damage in nude mice[J]. Journal of Shandong University(Health Sciences), 2017, 55(9): 66-72.
[4] Zhu YS, Lin YZ, Xie SJ, et al. Mapping intellectual structures and research hotspots of chronic wound in global perspective[J]. Regen Ther, 2025, 30: 47-62. doi: 10.1016/j.reth.2025.05.002
[5] Altalbawy FMA, Mukhlif BAM, Hussen A, et al. Regenerative potential of PRP-based scaffolds in chronic wound healing: mechanisms, advances, and therapeutic insights[J]. Regen Ther, 2025, 30: 278-298. doi: 10.1016/j.reth.2025.06.008
[6] 张华宇, 殷思源, 刘健, 等. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报(医学版), 2021, 59(4): 17-27. ZHANG Huayu, YIN Siyuan, LIU Jian, et al. Quantitative proteomic analysis of epidermal stem cells in oxygen-glucose deprivation conditions[J]. Journal of Shandong University(Health Sciences), 2021, 59(4): 17-27.
[7] Song JL, Zhao T, Wang CF, et al. Cell migration in diabetic wound healing: molecular mechanisms and therapeutic strategies(Review)[J]. Int J Mol Med, 2025, 56(2): 126. doi: 10.3892/ijmm.2025.5567
[8] Gao HJ, Fang XW, Chen H, et al. Polydopamine-modified collagen membrane loading with platelet-rich plasma for enhancing diabetic wound healing[J]. Biomed Phys Eng Express, 2025, 11(4): 045033. doi: 10.1088/2057-1976/adebf6
[9] Abedin-Do A, Zhang Z, Douville Y, et al. Electrical stimulation promotes the wound-healing properties of diabetic human skin fibroblasts[J]. J Tissue Eng Regen Med, 2022, 16(7): 643-652.
[10] Dasari N, Jiang A, Skochdopole A, et al. Updates in diabetic wound healing, inflammation, and scarring[J]. Semin Plast Surg, 2021, 35(3): 153-158.
[11] Huang L, Cai HA, Zhang MS, et al. Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis[J]. J Pharmacol Sci, 2021, 147(3): 271-283.
[12] Rai V, Moellmer R, Agrawal DK. Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer[J]. Mol Biol Rep, 2023, 50(2): 1913-1929.
[13] Mishra R, Singh TG, Bhatia R, et al. Unveiling the therapeutic journey of snail mucus in diabetic wound care[J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(6): 6531-6560.
[14] Sarkar P, Iyengar D, Mukhopadhyay K. Emergence of snail mucus as a multifunctional biogenic material for biomedical applications[J]. Acta Biomater, 2025, 200: 21-46. doi: 10.1016/j.actbio.2025.05.006
[15] Alarfaj K, Almatroudi A, Alrumaihi F, et al. Evaluation of the white garden snail(Theba pisana)mucus slime for its efficacy as an antimicrobial agent[J]. J Pure Appl Microbiol, 2024, 18(2): 900-906.
[16] Zhu KH, Zhang ZY, Li GQ, et al. Extraction, structure, pharmacological activities and applications of polysaccharides and proteins isolated from snail mucus[J]. Int J Biol Macromol, 2024, 258: 128878. doi: 10.1016/j.ijbiomac.2023.128878
[17] Zhai MZ, Tan HX, Xu AH, et al. Immunomodulatory hydrogel loaded with PD-L1-expressing exosomes reprograms macrophages and accelerates diabetic wound healing[J]. Biomater Adv, 2025, 176: 214362. doi: 10.1016/j.bioadv.2025.214362
[18] Zheng K, Yang ZW, Ba T. Marine bioactive peptides as potential therapeutic agents for wound healing-a review[J]. Ann Med, 2025, 57(1): 2530693. doi: 10.1080/07853890.2025.2530693
[19] Akita S, Akino K, Hirano A. Basic fibroblast growth factor in scarless wound healing[J]. Adv Wound Care(New Rochelle), 2013, 2(2): 44-49.
[20] 张雯, 于文慧, 赵钢, 等. 糖尿病创面中“肠-皮肤-表观遗传” 三维调控轴的研究进展[J]. 中国医药导报, 2025, 22(17): 80-86. ZHANG Wen, YU Wenhui, ZHAO Gang, et al. Research progress on three-dimensional regulatory axis of “gut-skin-epigenetic inheritance” in diabetic wound[J]. China Medical Herald, 2025, 22(17): 80-86.
[21] Wu MF, Huang JH, Shi JJ, et al. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts in vivo and in vitro[J]. J Ethnopharmacol, 2022, 293: 115321. doi: 10.1016/j.jep.2022.115321
[22] Xia YD, Han BB, Zhang FY, et al. Pae/exo@PF-127 promote diabetic wound healing through miR-424-5p[J]. Phytomedicine, 2025, 142: 156688. doi: 10.1016/j.phymed.2025.156688
[23] Mo JK, Zhang JQ, Meng XB, et al. Inhibition of microRNA-139-5p improves fibroblasts viability and enhances wound repair in diabetic rats through AP-1(c-fos/c-Jun)[J]. Diabetes Metab Syndr Obes, 2025, 18: 237-248. doi: 10.2147/DMSO.S496556
[24] Raffetto JD, Gram CH, Overman KC, et al. Mitogen-activated protein kinase p38 pathway in venous ulcer fibroblasts[J]. Vasc Endovascular Surg, 2008, 42(4): 367-374.
[25] Fukui R, Shibata N, Kohbayashi E, et al. Inhibition of smooth muscle cell migration by the p21 cyclin-dependent kinase inhibitor(Cip1)[J]. Atherosclerosis, 1997, 132(1): 53-59.
[26] 冼文娇, 梁景南, 卢巍, 等. 微小RNA-199a-3p对小鼠皮肤瘢痕疙瘩成纤维细胞的抑制作用及其机制[J]. 西安交通大学学报(医学版), 2024, 45(6): 934-940. XIAN Wenjiao, LIANG Jingnan, LU Wei, et al. Inhibition of microRNA-199a-3p on mouse skin keloid formation and its mechanism[J]. Journal of Xian Jiaotong University(Medical Sciences), 2024, 45(6): 934-940.
[27] Krall JA, Beyer EM, MacBeath G. High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways[J]. PLoS One, 2011, 6(1): e15945. doi: 10.1371/journal.pone.0015945
[28] Bazeer AB, Ekambaram G, Louis LRP, et al. Snail mucus: unlocking a natural powerhouse for dermatological innovation[J]. Arch Dermatol Res, 2024, 317(1): 113. doi: 10.1007/s00403-024-03638-1
[1] 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-.
[2] 韩觉明,王晖,吴倩,郑慧玲,朱琳. B4GALNT4促进肺腺癌细胞增殖、迁移和侵袭能力[J]. 山东大学学报 (医学版), 2025, 63(7): 23-31.
[3] 张洁,张芳芳,王靖楠,李泽宇,宋颖,李娜. circ_0000144在乳腺癌中的表达及其对乳腺癌细胞增殖、迁移和侵袭能力的影响[J]. 山东大学学报 (医学版), 2025, 63(1): 35-42.
[4] 曹华琳,贾彦召,曲莉,尹昕. CircFAT1调节miR-296-3p/MAPRE1轴对鼻咽癌细胞增殖、凋亡和放疗敏感性的影响[J]. 山东大学学报 (医学版), 2023, 61(9): 38-46.
[5] 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11.
[6] 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10.
[7] 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87.
[8] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[9] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[10] 覃超群,黄斌,阳芳,王昌明,肖影,黄汉灿,李丽英,高枫. GSK3β/eEF2K信号通过调控自噬参与肺成纤维细胞诱导分化[J]. 山东大学学报 (医学版), 2022, 60(5): 8-15.
[11] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[12] 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37.
[13] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[14] 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26.
[15] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!