您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (5): 54-63.doi: 10.6040/j.issn.1671-7554.0.2024.0159

• 慢性气道疾病的精准个体化诊疗——临床研究 • 上一篇    

基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联

吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆   

  1. 南京医科大学附属苏州医院呼吸与危重症医学科, 江苏 苏州 215000
  • 发布日期:2024-05-29
  • 通讯作者: 林盪. E-mail:lind69@163.com
  • 基金资助:
    2022年度江苏基层卫生发展与全科医学教育研究中心开放课题(2022B06)

Genetic association of lipids and lipid-lowering drugs with chronic obstructive pulmonary disease based on Mendelian randomization

WU Tong, YANG Jingyu, LIN Dang, XU Wanru, ZENG Yujun   

  1. Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, Jiangsu, China
  • Published:2024-05-29

摘要: 目的 采用孟德尔随机化分析方法(Mendelian randomization, MR)从遗传学角度探讨脂质性状在慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD)中的因果作用,并评估降脂药物靶点对COPD的潜在影响。 方法 从全球脂质遗传学联盟(the Global Lipids Genetics Consortium, GLGC)和表达型数量性状位点基因组联盟(Expressed Quantitative Trait Loci Genome Consortium, eQTLGen Consortium)中提取了与脂质性状相关的遗传变异和降脂药物靶标的编码基因变异。其中脂质性状和降脂药物靶标作为暴露变量,分别来自GLGC和eQTLGen Consortium;COPD作为结局变量,来自芬兰数据库(https://doi.org/10.1038/s41586-022-05473-8)。将与暴露变量强相关的单核苷酸多态性(single nucleotide polymorphisms,SNP)作为工具变量,采用逆方差加权法(inverse-variance weighted, IVW)作为主要分析方法探索脂质性状在COPD中的因果作用及降脂药物靶点对COPD的潜在影响,MR-Egger回归法和加权中位数法(weighted median, WME)作为IVW结果的补充证据,采用留一法敏感性分析探讨单个SNP对IVW分析结果的影响,同时采用MR-Egger法的截距和Cochrans Q检验进行水平多效性和异质性的检验保证结果的稳定性,采用漏斗图分析研究结果的潜在偏倚情况。对于达到COPD风险显著性的药物靶点CETP,共定位分析用于检验排除限制假设。 结果 IVW法分析结果显示,LDL-C(OR=1.077,95%CI:1.001~1.159,P=0.046)和TC(OR=1.088,95%CI:1.002~1.181,P=0.044)遗传水平的增加与COPD风险增加相关。CETP遗传水平的增加与COPD风险增加相关(OR=1.179,95%CI:1.052~1.321,P=0.004)。MR-Egger回归、Cochrans Q检验、留一法均提示研究结果具有可靠性和稳健性。 结论 血脂异常是COPD的致病因素。LDL-C和TC水平的增加与COPD的发病有关,在3个降脂药物靶点中,CETP是COPD有前途的候选药物靶点。

关键词: 孟德尔随机化, 他汀类药物, 总胆固醇, 甘油三酯, 低密度脂蛋白, 高密度脂蛋白

Abstract: Objective To explore the causal role of lipid traits in chronic obstructive pulmonary disease(COPD)from a genetic perspective and to evaluate the potential impact of lipid-lowering medication targets on COPD by using Mendelian randomization(MR)analysis. Methods Genetic variants associated with lipid traits and genetic variants coding for lipid-lowering drug targets were extracted from The Global Lipids Genetics Consortium(GLGC)and the Expressed Quantitative Trait Loci Genome Consortium(eQTLGen Consortium). Lipid traits and lipid-lowering drug targets were extracted from GLGC and eQTLGen Consortium as exposure variables, and COPD was derived from the FinnGen database(https://www.finngen.fi/en)as the outcome variable. Single nucleotide polymorphism(SNP)strongly associated with the exposure variables were used as instrumental variables, and the inverse variance weighted(IVW)was used as the main method to explore the the causal role of lipid traits in COPD and the potential effects of lipid-lowering drug targets on COPD, MR-Egger regression and the weighted median was used as complementary evidence to the IVW results. A Leave-one-out sensitivity analysis was used to explore the effect of individual SNP on the results of IVW analysis, while the intercept of MR-Egger method and Cochrans Q test for horizontal multiplicity and heterogeneity were used to ensure the stability of the results, and funnel plots were used to analyze the potential biases of the study results. For the drug target CETP that reached COPD risk significance, co-localization analysis was used to test the exclusion restriction hypothesis. Results IVW analysis results indicated that increased genetic levels of LDL-C(OR=1.077, 95%CI: 1.001-1.159, P=0.046)and TC(OR=1.088, 95%CI: 1.002-1.181, P=0.044)were associated with an increased risk of COPD. Increased genetic levels of CETP were associated with an increased risk of COPD(OR=1.179, 95%CI: 1.052-1.321, P=0.004). MR-Egger regression, Cochrans Q test, and leave-one-out analysis suggested that the findings were reliable and robust. Conclusion Dyslipidemia is a causative factor in COPD. Increased levels of LDL-C and TC are associated with the pathogenesis of COPD. Among the three lipid-lowering drug targets, CETP is a promising candidate drug target for COPD.

Key words: Mendelian randomization, Statin drugs, Total cholesterol, Triglycerides, Low-density lipoprotein, High-density lipoprotein

中图分类号: 

  • R563
[1] Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease[J]. Lancet, 2022, 399(10342): 2227-2242.
[2] Shen YC, Yang T, Guo SJ, et al. Increased serum ox-LDL levels correlated with lung function, inflammation, and oxidative stress in COPD[J]. Mediators Inflamm, 2013, 2013: 972347. doi:10.1155/2013/972347.
[3] Xue XM, Cai HY, Chai Z, et al. Efficacy of statin therapy in chronic obstructive pulmonary disease: a systematic review and meta-analysis from 2008-2019[J]. Panminerva Med, 2023, 65(3): 376-384.
[4] Walker VM, Davey Smith G, Davies NM, et al. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities[J]. Int J Epidemiol, 2017, 46(6): 2078-2089.
[5] Schmidt AF, Finan C, Gordillo-Marañón M, et al. Genetic drug target validation using Mendelian randomisation[J]. Nat Commun, 2020, 11(1): 3255. doi:10.1038/s41467-020-16969-0.
[6] Williams DM, Finan C, Schmidt AF, et al. Lipid lowering and Alzheimer disease risk: a Mendelian randomization study[J]. Ann Neurol, 2020, 87(1): 30-39.
[7] Yarmolinsky J, Bull CJ, Vincent EE, et al. Association between genetically proxied inhibition of HMG-CoA reductase and epithelial ovarian cancer[J]. JAMA, 2020, 323(7): 646-655.
[8] Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels[J]. Nat Genet, 2013, 45(11): 1274-1283.
[9] Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518.
[10] Võsa U, Claringbould A, Westra HJ, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression[J]. Nat Genet, 2021, 53(9): 1300-1310.
[11] Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology[J]. Stat Med, 2008, 27(8): 1133-1163.
[12] Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement[J]. JAMA, 2021, 326(16): 1614-1621.
[13] Berberich AJ, Hegele RA. A modern approach to dyslipidemia[J]. Endocr Rev, 2022, 43(4): 611-653.
[14] Arvanitis M, Lowenstein CJ. Dyslipidemia[J]. Ann Intern Med, 2023, 176(6): ITC81-ITC96.
[15] 王晶,张国燕,程杉.孟德尔随机化的良好实践—孟德尔随机化分析的常见设计、关键挑战及优化[J]. 首都医科大学学报, 2023, 44(6): 1087-1094. WANG Jing, ZHANG Guoyan, CHENG Shan. Good practices in Mendelian randomization: common designs, key challenges, and optimization in Mendelian randomization analysis [J]. Journal of Capital Medical University, 2023, 44(6): 1087-1094.
[16] Yin KJ, Huang JX, Wang P, et al. No genetic causal association between periodontitis and arthritis: a bidirectional two-sample Mendelian randomization analysis[J]. Front Immunol, 2022, 13: 808832. doi:10.3389/fimmu.2022.808832.
[17] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389.
[18] Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PLoS Genet, 2014, 10(5): e1004383. doi:10.1371/journal.pgen.1004383.
[19] Zuber V, Grinberg NF, Gill D, et al. Combining evidence from Mendelian randomization and colocalization: review and comparison of approaches[J]. Am J Hum Genet, 2022, 109(5): 767-782.
[20] Butler LM, Perone Y, Dehairs J, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention[J]. Adv Drug Deliv Rev, 2020, 159: 245-293. doi:10.1016/j.addr.2020.07.013.
[21] Li HC, Feng ZY, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells[J]. Theranostics, 2020, 10(16): 7053-7069.
[22] Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review[J]. Lipids Health Dis, 2020, 19(1): 122. doi:10.1186/s12944-020-01278-8.
[23] Suryadevara V, Ramchandran R, Kamp DW, et al. Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways[J]. Int J Mol Sci, 2020, 21(12): 4257. doi:10.3390/ijms21124257.
[24] Kotlyarov S, Kotlyarova A. Anti-inflammatory function of fatty acids and involvement of their metabolites in the resolution of inflammation in chronic obstructive pulmonary disease[J]. Int J Mol Sci, 2021, 22(23): 12803. doi:10.3390/ijms222312803.
[25] Wang YX, Xia SY. Relationship between ACSL4-mediated ferroptosis and chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2023, 18: 99-111. doi:10.2147/COPD.S391129.
[26] Can U, Yerlikaya FH, Yosunkaya S. Role of oxidative stress and serum lipid levels in stable chronic obstructive pulmonary disease[J]. J Chin Med Assoc, 2015, 78(12): 702-708.
[27] Reed RM, Iacono A, DeFilippis A, et al. Advanced chronic obstructive pulmonary disease is associated with high levels of high-density lipoprotein cholesterol[J]. J Heart Lung Transplant, 2011, 30(6): 674-678.
[28] Markeli c I, Hlap ci c I, Rogi c D, et al. Lipid profile and atherogenic indices in patients with stable chronic obstructive pulmonary disease[J]. Nutr Metab Cardiovasc Dis, 2021, 31(1): 153-161.
[29] Huang YB, Ding KK, Dai ZC, et al. The relationship of low-density-lipoprotein to lymphocyte ratio with chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 2175-2185. doi:10.2147/COPD.S369161.
[30] McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease[J]. N Engl J Med, 2011, 365(17): 1567-1575.
[31] 中国胆固醇教育计划(CCEP)工作委员会,中国医疗保健国际交流促进会动脉粥样硬化血栓疾病防治分会,中国老年学和老年医学学会心血管病分会,等.中国胆固醇教育计划调脂治疗降低心血管事件专家建议[J]. 中华内科杂志, 2020, 59(1): 18-22. China Cholesterol Education Program(CCEP)Working Committee, Atherosclerosis Thrombosis Prevention and Control Subcommittee of Chinese International Exchange and Promotion Association for Medical and Healthcare, Cardiovascular Disease Subcommittee of China Association of Gerontology and Geriatrics, et al. China cholesterol education program(CCEP)expert advice for the management of dyslipidaemias to reduce cardiovascular risk(2019)[J]. Chinese Journal of Internal Medicine, 2020, 59(1): 18-22.
[32] Liu DJ, Peloso GM, Yu HJ, et al. Exome-wide association study of plasma lipids in >300, 000 individuals[J]. Nat Genet, 2017, 49(12): 1758-1766.
[33] Hukku A, Pividori M, Luca F, et al. Probabilistic colocalization of genetic variants from complex and molecular traits: promise and limitations[J]. Am J Hum Genet, 2021, 108(1): 25-35.
[34] Li ZA, Zhang B, Liu QR, et al. Genetic association of lipids and lipid-lowering drug target genes with non-alcoholic fatty liver disease[J]. EBioMedicine, 2023, 90: 104543. doi:10.1016/j.ebiom.2023.104543.
[35] Holmes MV, Richardson TG, Ference BA, et al. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development[J]. Nat Rev Cardiol, 2021, 18(6): 435-453.
[1] 赵智博,满振涛,李伟. 胆固醇代谢在骨关节炎疾病中的作用及研究进展[J]. 山东大学学报 (医学版), 2024, 62(2): 1-9.
[2] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[3] 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107.
[4] 常鑫,刘世佳,韩璐. 服用阿司匹林与子宫内膜癌发病风险的孟德尔随机化关系[J]. 山东大学学报 (医学版), 2023, 61(10): 58-62.
[5] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[6] 张凯,司书成,李吉庆,刘晓雯,赵英琪,薛付忠. 睡眠性状与肠易激综合征的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2022, 60(8): 109-114.
[7] 袁孟绮,霍凤蕾,任会萍,郭秋爽,蓝菁. Sdccag3通过Wnt通路对高脂血症大鼠种植体骨结合的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 66-73.
[8] 赵美茹,朱迪,刘淋,管庆波,张栩. 简易胰岛素抵抗指标与698例2型糖尿病患者发生高尿酸血症风险的关联[J]. 山东大学学报 (医学版), 2022, 60(12): 44-51.
[9] 谢佳莹,祁佳,宋铭,李育林,王迪,贾旭,张薇,钟明,尚嫄嫄. 血清蛋白质β-折叠水平与冠心病的相关性[J]. 山东大学学报 (医学版), 2022, 60(1): 21-26.
[10] 杨璇,李岩志,马伟,贾崇奇. 基于两样本孟德尔随机化的肺功能与新型冠状病毒肺炎病死风险的因果关系[J]. 山东大学学报 (医学版), 2021, 59(7): 104-111.
[11] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[12] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67-71.
[13] 李云霞,李洪凯,马韫韬,于媛媛,孙晓茹,刘新辉, 司书成,侯蕾,袁同慧,刘璐,李文超,薛付忠,刘言训. 基于两样本孟德尔随机化的身高和冠心病风险之间因果关系[J]. 山东大学学报 (医学版), 2020, 58(5): 107-114.
[14] 唐博,邵静,崔静,孙健平. 2型糖尿病发病与高密度脂蛋白关系的机制研究[J]. 山东大学学报 (医学版), 2020, 58(3): 99-106.
[15] 李明卓,孙秀彬,王春霞,杨洋,刘新辉,刘言训,薛付忠,袁中尚. 血脂正常人群HDL-C纵向变化与冠心病的关联性分析:一项回顾性队列研究[J]. 山东大学学报 (医学版), 2019, 57(8): 110-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!