您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (1): 31-37.doi: 10.6040/j.issn.1671-7554.0.2023.0799

• 临床医学 • 上一篇    

子痫前期相关Siglec-6核心基因的预测及生物信息学分析

秦金金,曹辰媛,邢杰杰,安燕,黄煜湘   

  • 发布日期:2024-02-02
  • 通讯作者: 黄煜湘. E-mail:qinjinjin_1@163.com
  • 基金资助:
    河北省卫健委项目(20220634);河北省医学科学研究课题计划(20211645);河北大学医学培育项目(2023B04)

Predication and bioinformatics analysis of preeclampsia-related Siglec-6 core genes

QIN Jinjin, CAO Chenyuan, XING Jiejie, AN Yan, HUANG Yuxiang   

  1. Department of Obstetrics, Affiliated Hospital of Hebei University, Baoding 072550, Hebei, China
  • Published:2024-02-02

摘要: 目的 探讨子痫前期高通量生物信息学分析与核心发病基因。 方法 选取基因表达综合数据库(Gene Expression Omnibus, GEO)2个关于子痫前期编码基因芯片数据进行生物信息学分析。通过R语言对2组数据进行均一化矫正,其后找到共同上调和下调表达的差异基因。对上调和下调表达的差异基因进行基因本体富集分析、京都百科全书信号通路富集分析、蛋白互作网络分析以及核心基因计算分析,找到与子痫前期最相关的发病基因及信号通路。随机选取河北大学附属医院产科5例子痫前期患者和正常产妇的胎盘组织进行实时定量聚合酶链反应对核心基因进行验证实验。 结果 融合子痫编码基因芯片GSE43942和GSE66273筛选出38个共同上调和20个共同下调表达的基因。全部数据经均一化处理后基因本体分析显示,生物功能富集于促卵泡激素分泌的正向调节,分子组成富集于细胞外区,细胞组分富集于激素活性,信号通路富集于肽激素代谢通路。蛋白质互作网络结果显示,全部差异基因间共58个点,30条线,cytohubba对全部点和线分析计算后锁定Siglec-6为子痫前期发病的核心基因。实时定量聚合酶链反应验证子痫前期孕妇胎盘组织内Siglec-6表达是正常孕妇体内的2.85倍,与生物信息学分析结果一致。 结论 Siglec-6可作为子痫前期血清学诊断的潜在诊疗标志物,并有希望成为此疾病新的治疗靶点。

关键词: 子痫前期, 高通量生物信息学分析, 基因本体富集分析, 京都百科全书信号通路富集分析, 蛋白互作网络分析, 实时定量聚合酶链反应

Abstract: Objective To investigate the core pathogenesis genes of preeclampsia through high throughput bioinformatics analysis. Methods Two microarray datasets of preeclampsia coding genes from Gene Expression Omnibus(GEO)were selected for bioinformatics analysis. The datasets were homogenized and corrected with R language, and then the up-regulated and down-regulated differentially expressed genes were selected, which were then analyzed with gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes(KEGG)signal pathway enrichment, protein interaction network analysis and core gene calculation analysis to identify the most relevant pathogenesis genes and signal pathways of preeclampsia. Five placentas of preeclampsia patients and normal pregnant women were randomly selected for real-time quantitative PCR to verify the core genes. Results A total of 38 up-regulated and 20 down-regulated genes were screened from the microarray GSE43942 and GSE66273. After homogenization of all data, gene ontology analysis showed that biological function was enriched in positive regulation of follicle-stimulating hormone secretion, molecular composition was enriched in extracellular region, and cell component was enriched in hormone activity. KEGG signaling pathway was enriched in the Peptide hormone metabolism pathway. The protein interaction network showed that there were 58 points and 30 lines among all differentially expressed genes. The cytohubba analysis identified Siglec-6 as the core gene of preeclampsia. The real-time quantitative PCR showed that the expression of Siglec-6 in the placental tissue of preeclampsia pregnant women was 2.85 times that of normal pregnant women, which was consistent with the results of bioinformatics analysis. Conclusion Siglec-6 could be used as a potential diagnostic and therapeutic marker for preeclampsia.

Key words: Preeclampsia, High throughput bioinformatics analysis, Gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes signal pathway enrichment analysis, Protein interaction network analysis, Real-time quantitative PCR

中图分类号: 

  • R714.244
[1] Rana S, Lemoine E, Granger JP, et al. Preeclampsia: pathophysiology,challenges,and perspectives[J]. CircRes, 2019, 124(7): 1094-1112.
[2] 李晓琼, 季东林, 胡海琴, 等. 孕早期胎盘生长因子、同型半胱氨酸及血管内皮生长因子对妊娠期高血压疾病的预测价值[J]. 中国妇产科临床杂志, 2020, 21(1): 87-88.
[3] 中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2020)[J]. 中华妇产科杂志, 2020, 55(4): 227-238.
[4] 马善朵, 王维俊, 冯文. Hcy、ET-1和mALB联合检测用于妊娠高血压疾病患者肾损伤的早期诊断[J]. 国际检验医学杂志, 2020, 41(1): 120-122.
[5] 廖灵蕴, 刘敏, 张燕萍, 等. 子痫前期孕妇胎盘组织中circRNA表达谱及circRNA-miRNA-mRNA相互作用网络分析[J]. 中华妇产科杂志, 2023, 58(6): 430-441. LIAO Lingyun, LIU Min, ZHANG Yanping, et al. Circular RNA expression profiles and circRNA miRNA mRNA crosstalk in pre-eclampticplacenta[J]. Chinese Journal of Obstetrics and Gynecology, 2023, 58(6): 430-441.
[6] Rana S, Lemoine E, Granger JP, et al. Preeclampsia: pathophysiology, challenges, and perspectives[J]. Circ Res, 2019, 124(7): 1094-1112.
[7] 隋欣爽, 孙敬霞, 袁晶, 等. 内皮细胞特异性分子与子痫前期关系的研究进展[J]. 国际妇产科学杂志, 2021, 48(2): 169-173. SUI Xinshuang, SUN Jingxia, YUAN Jing, et al. Research progress on the relationship between endocan and pre-eclampsia[J]. Journal of International Obstetrics and Gynecology, 2021, 48(2): 169-173.
[8] Ives CW, Sinkey R, Rajapreyar I, et al. Preeclampsia-pathophysiology and clinical presentations: JACC state-of- the-art review[J]. J Am Coll Cardiol, 2020, 76(14): 1690-1702.
[9] 黄金, 贾瑞喆. 母体中多肽与子痫前期相关性的研究进展[J]. 医学综述, 2020, 22(1): 322-325. HUANG Jin, JIA Ruizhe. Advances in research on relationship between polypeptide in mother and preeclampsia[J]. Medical Recapitulate, 2020, 22(1): 322-325.
[10] Wang W, Wang T, Wang Y, et al. Integration of gene expression profile data to verify hub genes of patients with stanford a aortic dissection[J]. Biomed Res Int, 2019, 2019: 3629751. doi: 10. 1155/2019/3629751.
[11] Huang DW, Sherman BT, Tan Q, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists[J]. Genome Biol, 2007, 8(9): R183. doi: 10.1186/gb-2007-8-9-r183.
[12] Szklarczyk D, Franceschini A, Kuhn M, et al. the STRING database in 2011: functional interaction networks of proteins, globally integrated and scored[J]. Nucleic Acids Res, 2011, 39: 561-568. doi: 10.1093/nar/gkq973.
[13] Jim B, Karumanchi SA. Preeclampsia: pathogenesis, prevention, and long-term complications[J]. Semin Nephrol, 2017, 37(4): 386-397.
[14] 孙宁玲. 2018年欧洲心脏病学会《妊娠期心血管疾病诊疗指南》中妊娠期高血压疾病简介及解读[J]. 中华高血压杂志, 2019, 27(5): 401-403.
[15] Mohamad, Muhammad A, Mohd M, et al. A review of candidate genes and pathways in preeclampsia-an integrated bioinformatical analysis[J]. Biology(Basel), 2020, 9(4): 62. doi: 10.3390/biology9040062.
[16] Tian QX, Xia SH, Wu YH, et al. Comprehensive analysis of the differential expression profile of microRNAs in missedabortion[J]. Kaohsiung J Med Sci, 2020, 36(2): 114-121.
[17] Brinkman-Van der Linden EC, Hurtado-Ziola N, Hayakawa T'Wiggleton L, et al. Human-specific expression of Siglec-6 in the placenta[J]. Glycobiology, 2007, 17(9): 922-931.
[18] Rumer KK, Uyenishi J, Hoffman MC, et al. Siglec-6 expression is increased in placentas from pregnancies complicated by preterm preeclampsia[J]. Reprod Sci, 2013, 20(6): 646-653.
[19] Winn VD, Gormley M, Paquet AC, et al. Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2[J]. Endocrinology, 2009, 150(1): 452-462.
[20] Várkonyi T, Nagy B, Füle T, et al. Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar[J]. Placenta, 2011, Suppl(0): S21-29.
[21] Trifonova EA, Gabidulina TV, Ershov NI, et al. Analysis of the placental tissue transcriptome of normal and preeclampsia complicated pregnancies[J]. Acta Naturae, 2014, 6(2): 71-83.
[22] Kaartokallio T, Cervera A, Kyllönen A, et al. Gene expression profiling of pre-eclamptic placentae by RNA sequencing[J]. Sci Rep, 2015, 21(5): 14107. doi: 10.1038/srep17245.
[23] Zhang P, Yang H, Feng Y, et al. Polymorphisms in sex hormone metabolism genes and risk of preeclampsia in Taiyuan, China[J]. Gynecol Obstet Invest, 2018, 83(2): 179-186.
[24] Shin YY, Jeong JS, Park MN, et al. Regulation of steroid hormones in the placenta and serum of women with preeclampsia[J]. Mol Med Rep, 2018, 17(2): 2681-2688.
[25] Procopciuc LM, Caracostea G, Hazi G, et al. D2-Thr92Ala, thyroid hormone levels and biochemical hypothyroidism in preeclampsia[J]. Gynecol Endocrinol, 2017, 33(2): 136-140.
[1] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[2] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[3] 唐博,邵静,崔静,孙健平. 2型糖尿病发病与高密度脂蛋白关系的机制研究[J]. 山东大学学报 (医学版), 2020, 58(3): 99-106.
[4] 张炜悦, 李亚光, 刘恩令, 王伟杰, 魏靖文, 荆楠. microRNA519D与基质金属蛋白酶2在36例子痫前期患者胎盘组织中的表达及意义[J]. 山东大学学报 (医学版), 2020, 58(1): 54-59.
[5] 王润梅,杨秋红,张芳,马玉燕. 子痫前期患者远期预后及其后代发病风险的评估[J]. 山东大学学报 (医学版), 2017, 55(12): 31-35.
[6] 陈更越, 张静, 丁树艳, 马莉莉, 王伟, 田园. HO-1及MIF在子痫前期患者胎盘及脐组织的表达[J]. 山东大学学报(医学版), 2014, 52(S2): 1-2.
[7] 段颜, 刘媛媛. 低分子肝素对重度子痫前期合并胎儿生长受限胎盘病理及HO-1表达的影响[J]. 山东大学学报(医学版), 2014, 52(11): 77-80.
[8] 刘颖1,展新风2,甄军晖3,马道新4,罗霞1. PAPP-A、脐动脉S/D比值与子痫前期的相关性研究[J]. 山东大学学报(医学版), 2013, 51(11): 78-81.
[9] 孙茜,侯艳梅 . 孕妇桡动脉血流图对预测子痫前期的临床观察[J]. 山东大学学报(医学版), 2012, 50(5): 120-.
[10] 姚丽1,孙钦峰2,杨春惠1. 子痫前期伴牙周炎患者血清TNF-α、IL-6及CRP水平的检测[J]. 山东大学学报(医学版), 2012, 50(10): 123-126.
[11] 陈丽君1,尚慧5,罗霞1,王谦2,张建平3,王立祥4. 阿司匹林对小鼠子痫前期防治效果的研究[J]. 山东大学学报(医学版), 2011, 49(11): 53-.
[12] 田美荣1,马玉燕1,王磊一2,范月莲1,刘振平2. IL-17在子痫前期患者胎盘组织和外周血中的表达[J]. 山东大学学报(医学版), 2010, 48(5): 105-.
[13] 孙媛,陈丽君. 胎盘蛋白13和glycodelin在子痫前期患者血清中的表达[J]. 山东大学学报(医学版), 2010, 48(4): 130-132.
[14] 王磊1,张梅2,吴婷3,孙钦峰3,杨丕山3,魏奉才1. 冠心病伴牙周炎患者牙周状况及龈下菌斑的研究[J]. 山东大学学报(医学版), 2010, 48(3): 138-140.
[15] 王立俊,张立功,左常婷 . 外周血NK,IL-12,CRP在子痫前期中的测定及意义[J]. 山东大学学报(医学版), 2008, 46(4): 424-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!