山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (8): 79-85.doi: 10.6040/j.issn.1671-7554.0.2023.0224
• 公共卫生与管理学 • 上一篇
于晴晴1,常开锋2,李吉庆1,张凯1,付苹1,刘晓雯1,赵英淇1,薛付忠1
YU Qingqing1, CHANG Kaifeng2, LI Jiqing1, ZHANG Kai1, FU Ping1,LIU Xiaowen1, ZHAO Yingqi1, XUE Fuzhong1
摘要: 目的 探讨高血压在非甾体抗炎药(NSAIDs)暴露与心脑血管疾病风险关联中的中介效应。 方法 基于国家健康医疗大数据研究院平邑协作中心平台构建随访队列,NSAIDs暴露定义为每年累积剂量(cDDDs)≥30,分别采用广义估计方程模型(GEE)和Cox比例风险回归模型估计NSAIDs与血压及心脑血管疾病之间的关联。采用Baron-Kenny法探究高血压在NSAIDs与心脑血管疾病关联中的中介效应。 结果 随访队列共纳入81 791例研究对象,中位随访时间4.25(IQR:3.22~4.46)年,心脑血管疾病发生结局26 514例。多因素GEE结果显示,NSAIDs暴露与收缩压升高(β=0.98,95%CI:0.67~1.29)、舒张压降低(β=-0.19,95%CI:-0.37~-0.01)及高血压风险增加(OR=1.13,95%CI:1.08~1.18)均呈显著相关;多因素Cox模型显示,NSAIDs与心脑血管疾病、脑血管疾病及心血管疾病关联的HR分别为1.13(95%CI:1.10~1.16)、1.13(95%CI:1.09~1.17)和1.17(95%CI:1.13~1.21)。中介分析发现,高血压在NSAIDs暴露与心脑血管疾病关系中起到部分中介作用,中介比例为9.27%。 结论 NSAIDs有升高收缩压、降低舒张压的作用,是心脑血管疾病发病的危险因素。高血压是NSAIDs和心脑血管疾病之间的中介因素。
中图分类号:
[1] 蔡青青, 沈赟, 戴佩芳, 等. 非甾体类抗炎药物与高血压风险的研究进展[J]. 中国临床药学杂志, 2016, 25(5): 329-332. CAI Qingqing, SHEN Yun, DAI Peifang, et al. Research progress of nonsteroidal anti-inflammatory drugs and hypertension risk[J]. Chinese Journal of Clinical Pharmacy, 2016, 25(5): 329-332. [2] El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: underlying mechanisms and clinical relevance [J]. Pharmacol Res, 2018, 129: 251-261. doi: 10.1016/j.phrs.2017.11.029. [3] 罗桢敏, 杨科朋, 陈劲柏, 等. 从NSAIDs心血管不良反应机制探讨老年人用药管理[J]. 中国药物滥用防治杂志, 2021, 27(5): 707-710. LUO Zhenmin, YANG Kepeng, CHEN Jinbai, et al. Discussion on medication management in the elderly from the mechanism of cardiovascular adverse reactions of NSAIDs [J]. Chinese Journal of Drug Abuse Prevention and Treatment, 2021, 27(5): 707-710. [4] Liew JW, Ward MM, Reveille JD, et al. Nonsteroidal antiinflammatory drug use and association with incident hypertension in ankylosing spondylitis [J]. Arthritis Care Res(Hoboken), 2020, 72(11): 1645-1652. [5] Ricciotti E, Castro C, Tang SY, et al. Cyclooxygenase-2, Asymmetric Dimethylarginine, and the Cardiovascular Hazard from Nonsteroidal Anti-Inflammatory Drugs [J]. Circulation, 2018, 138(21): 2367-2378. [6] Ruschitzka F, Borer JS, Krum H, et al. Differential blood pressure effects of ibuprofen, naproxen, and celecoxib in patients with arthritis: the PRECISION-ABPM(prospective randomized evaluation of celecoxib integrated safety versus ibuprofen or naproxen ambulatory blood pressure measurement)trial [J]. Eur Heart J, 2017, 38(44): 3282-3292. [7] Schjerning AM, McGettigan P, Gislason G. Cardiovascular effects and safety of(non-aspirin)NSAIDs [J]. Nat Rev Cardiol, 2020, 17(9): 574-584. [8] García-Poza P, de Abajo FJ, Gil MJ, et al. Risk of ischemic stroke associated with non-steroidal anti-inflammatory drugs and paracetamol: a population-based case-control study [J]. J Thromb Haemost, 2015, 13(5): 708-718. [9] Chen AI, Lee YH, Perng WT, et al. Celecoxib and Etoricoxib may reduce risk of ischemic stroke in patients with rheumatoid arthritis: a nationwide retrospective cohort study [J]. Front Neurol, 2022, 13: 1018521. doi: 10.3389/fneur.2022.1018521. [10] Barthélémy O, Limbourg T, Collet JP, et al. Impact of non-steroidal anti-inflammatory drugs(NSAIDs)on cardiovascular outcomes in patients with stable atherothrombosis or multiple risk factors [J]. Int J Cardiol, 2013, 163(3): 266-271. [11] 施倩雯, 魏永越, 李清雅, 等. 疾病预后研究的中介分析方法评价[J]. 中国卫生统计, 2017, 34(3): 390-396. SHI Qianwen, WEI Yongyue, LI Qingya, et al. Evaluation of mediation analysis methods in survival data [J]. Chinese Journal of Health Statistics, 2017, 34(3): 390-396. [12] 施倩雯. 生存资料的中介分析方法评价[D]. 南京: 南京医科大学, 2017. [13] Morrison A, Ramey DR, van Adelsberg J, et al. Systematic review of trials of the effect of continued use of oral non-selective NSAIDs on blood pressure and hypertension [J]. Curr Med Res Opin, 2007, 23(10): 2395-2404. [14] Spence JD, Grosser T, FitzGerald GA. Acetaminophen, nonsteroidal anti-inflammatory drugs, and hypertension [J]. Hypertension, 2022, 79(9): 1922-1926. [15] Tso J, Hollowed C, Liu C, et al. Nonsteroidal anti-inflammatory drugs and cardiovascular risk in American football [J]. Med Sci Sports Exerc, 2020, 52(12): 2522-2528. [16] Zhu L, Xu C, Huo X, et al. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury [J]. Nat Commun, 2019, 10(1): 1888. doi: 10.1038/s41467-019-09492-4. [17] Foy MC, Vaishnav J, Sperati CJ. Drug-induced hypertension [J]. Endocrinol Metab Clin North Am, 2019, 48(4): 859-873. [18] Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs(NSAIDs)and organ damage: a current perspective [J]. Biochem Pharmacol,2020, 180: 114147. doi: 10.1016/j.bcp.2020.114147. [19] Jo HA, Kim DK, Park S, et al. Cardiovascular risk of nonsteroidal anti-inflammatory drugs in dialysis patients: a nationwide population-based study [J]. Nephrol Dial Transplant, 2021, 36(5): 909-917. [20] Schjerning Olsen AM, Gislason GH, McGettigan P, et al. Association of NSAID use with risk of bleeding and cardiovascular events in patients receiving antithrombotic therapy after myocardial infarction [J]. JAMA, 2015, 313(8): 805-814. [21] Masclee GMC, Straatman H, Arfè A, et al. Risk of acute myocardial infarction during use of individual NSAIDs: a nested case-control study from the SOS project [J]. PLoS One, 2018, 13(11): e0204746. doi: 10.1371/journal.pone.0204746. [22] Bally M, Dendukuri N, Rich B, et al. Risk of acute myocardial infarction with NSAIDs in real world use: Bayesian meta-analysis of individual patient data [J]. BMJ, 2017, 357: j1909. doi: 10.1136/bmj.j1909. [23] Mayor S. NSAIDs double risk of bleeding in patients taking antithrombotics after myocardial infarction, study finds [J]. BMJ, 2015, 350: h1043. doi: 10.1136/bmj.h1043. [24] Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis [J]. BMJ, 2011, 342: c7086. doi: 10.1136/bmj.c7086. [25] Khan S, Andrews KL, Chin-Dusting JPF. Cyclo-Oxygenase(COX)inhibitors and cardiovascular risk: are non-steroidal anti-inflammatory drugs really anti-inflammatory? [J]. Int J Mol Sci, 2019, 20(17): 4262. [26] 李志万, 石炜. 非甾体抗炎药物和抗血压药物联用对血压的影响[J]. 海峡药学, 2016, 28(6): 125-127. LI Zhiwan, SHI Wei. Effect of non-steroidal anti-inflammatory drugs combined with antihypertensive drugs on blood pressure [J]. Strait Pharmaceutical Journal, 2016, 28(6): 125-127. [27] Ingrasciotta Y, Sultana J, Giorgianni F, et al. Association of individual non-steroidal anti-inflammatory drugs and chronic kidney disease: a population-based case control study [J]. PLoS One, 2015, 10(4): e0122899. doi: 10.1371/journal.pone.0122899. [28] Floor-Schreudering A, De Smet PA, Buurma H, et al. NSAID-antihypertensive drug interactions: which outpatients are at risk for a rise in systolic blood pressure? [J]. Eur J Prev Cardiol, 2015, 22(1): 91-99. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18. |
[3] | 宋钰峰,宁豪,姚志刚,吴海虎,刘非凡,吕家驹. 肾上腺海绵状血管瘤临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(2): 37-42. |
[4] | 吕岩红,张志勉. 2 809名体检人群中高血压与幽门螺杆菌感染的关联性[J]. 山东大学学报 (医学版), 2022, 60(2): 43-47. |
[5] | 曹义海. 血管生成在疾病治疗中的应用与展望[J]. 山东大学学报 (医学版), 2021, 59(9): 9-14. |
[6] | 刘新雨,王权,琚号杰,孙晓杰. 认知功能在老年人社会资本与身体功能健康间的中介作用[J]. 山东大学学报 (医学版), 2021, 59(11): 100-107. |
[7] | 贾明旺,廖广园,熊明媚,徐文婷,王银玲,王懿春. 84例妊娠合并肺高血压患者预后的临床分析[J]. 山东大学学报 (医学版), 2021, 59(1): 34-39. |
[8] | 许琴,高梅,王海民,曹凌瑕,孙成林. 常染色体显性多囊肾病伴原发性醛固酮增多症1例[J]. 山东大学学报 (医学版), 2020, 58(4): 118-120. |
[9] | 安嬿,王律,陈参参,范秀珍. 206名护理硕士生心理资本与科研动机的调查分析[J]. 山东大学学报 (医学版), 2020, 58(12): 102-108. |
[10] | 王雪纯,董利,曹衍雯,董凯歌,王艺霖,袁莹,李士保,贾存显. 共情在大学生手机依赖倾向与人际交往困扰间的中介作用[J]. 山东大学学报 (医学版), 2019, 57(9): 119-124. |
[11] | 国雪杰,杨孝荣,桑少伟,刘兵艳,吕明. 济南市平阴县农村成年居民高血压知晓现状及影响因素[J]. 山东大学学报 (医学版), 2019, 57(12): 103-109. |
[12] | 王倩,徐凌忠,朱静,张娇,谢苏,于子航. 山东省农村老年高血压患者心理健康状况及其影响因素[J]. 山东大学学报 (医学版), 2019, 57(1): 92-100. |
[13] | 薛莉,胡文琦,魏然,张安然,林君芬,马伟. 2011~2013年高温热浪对苍南县高血压门诊就诊量的影响[J]. 山东大学学报 (医学版), 2018, 56(8): 63-69. |
[14] | 曹瑾,季晓康,孙秀彬,蒋正,薛付忠. γ-谷氨酰转肽酶与高尿酸血症关系的队列分析[J]. 山东大学学报(医学版), 2017, 55(6): 124-128. |
[15] | 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65. |
|