山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (8): 40-49.doi: 10.6040/j.issn.1671-7554.0.2022.1243
• 临床医学 • 上一篇
孟健丽1,王庆港2
MENG Jianli1, WANG Qinggang2
摘要: 目的 通过多种数据库分析空泡蛋白72同源物(VPS72)在肺腺/鳞癌中的表达水平、预后关系及潜在作用机制。 方法 基于肿瘤基因组图谱(TCGA)的数据集结合TIMER数据库和R语言数据包分析VPS72在肺腺/鳞癌的表达水平,Kaplan-Meier Plotter结合ROC曲线在线软件评估VPS72的预后关系和诊断价值,采用STRING和LinkedOmics筛选VPS72的互作蛋白和共表达基因,并通过LinkedOmics进行GO/KEGG功能富集分析,利用TIMER分析VPS72的表达与免疫细胞浸润之间的相关性,通过TISIDB数据库分析VPS72表达与不同免疫亚型的相关性。 结果 VPS72在肺腺/鳞癌中高表达,高表达VPS72的肺腺癌患者总生存期明显缩短(P=0.01),但高表达VPS72的肺鳞癌患者总生存期差异无统计学意义(P=0.17)。PPI分析发现,VPS72与H2AFZ、RUVBL1、DMAP1等10个蛋白存在相互作用。功能富集分析发现,VPS72主要参与剪接体和核糖体合成等过程。在肺腺癌中,VPS72表达与多种免疫细胞(包括B细胞、CD8+T细胞、CD4+T细胞、巨噬细胞、中性粒细胞和树突状细胞)浸润呈负相关;在肺鳞癌中,VPS72表达与巨噬细胞和中性粒细胞呈负相关。在肺腺/鳞癌中,VPS72表达与6种免疫亚型相关。 结论 VPS72在肺腺/鳞癌中表达显著增高,与肺腺癌的预后有一定的相关性,且参与了多种通路过程,与多种免疫细胞具有相关性,可能成为肺腺/鳞癌预后预测和治疗的新靶点。
中图分类号:
[1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. [2] Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med, 2018, 24(10): 1559-1567. [3] Ren YJ, Zhao SS, Jiang DD, et al. Proteomic biomarkers for lung cancer progression[J]. Biomark Med, 2018, 12(3): 205-215. [4] Horikawa I, Tanaka H, Yuasa Y, et al. Forced expression of YL-1 protein suppresses the anchorage-independent growth of Kirsten sarcoma virus-transformed NIH3T3 cells[J]. Exp Cell Res, 1995, 220(1): 11-17. [5] Chen TJ, Tu YN, Lv DN, et al. Vacuolar protein sorting-associated protein 72 homolog(VPS72)binding to lysine acetyltransferase 5(KAT5)promotes the proliferation, invasion and migration of hepatocellular carcinoma through regulating phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway[J]. Bioengineered, 2022, 13(4): 9197-9210. [6] 刘梦媛, 郑翔, 许永杰, 等. 利用TCGA数据库研究ERGIC3在肺腺癌免疫微环境中的作用及其预后评价中的价值[J]. 遵义医科大学学报, 2022, 45(4): 450-456. LIU Mengyuan, ZHENG Xiang, XU Yongjie, et al. Prognostic value of ERGIC3 and its role on immune microenvironment in lung adenocarcinoma based on TCGA database[J]. Journal of Zunyi Medical University, 2022, 45(4): 450-456. [7] Lánczky A, Gyorffy B. Web-based survival analysis tool tailored for medical research(KMplot): development and implementation[J]. J Med Internet Res, 2021, 23(7): e27633. doi:10.2196/27633. [8] 尉洁, 宋娇娇, 赵晋芳, 等. 基于贝叶斯估计的诊断试验ROC曲线回归模型[J]. 中国卫生统计, 2010, 27(2): 152-154. YU Jie, SONG Jiaojiao, ZHAO Jinfang, et al. ROC regression model based on Bayesian estimation in diagnostic test[J]. Chinese Journal of Health Statistics, 2010, 27(2): 152-154. [9] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报(医学版), 2022, 60(8): 63-71. LIU Teng, MA Yingchun. Expression of ECT2 in uterine corpus endometrial carcinoma and its clinical significance based on bioinformatics database[J]. Journal of Shandong University(Health Sciences), 2022, 60(8): 63-71. [10] Vasaikar SV, Straub P, Wang J, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types[J]. Nucleic Acids Res, 2018, 46(D1): D956-D963. [11] Li TW, Fu JX, Zeng ZX, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514. [12] Ru BB, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions[J]. Bioinformatics, 2019, 35(20): 4200-4202. [13] 张同海, 王劲松, 黄文斌, 等. 联合检测TTF1、CK5/6、p63和napsinA在肺鳞癌和腺癌鉴别诊断中的价值[J]. 临床与实验病理学杂志, 2012, 28(8): 918-920. ZHANG Tonghai, WANG Jinsong, HUANG Wenbin, et al. Value of combined detection of TTF1, CK5/6, p63 and napsinA in differential diagnosis of lung squamous cell carcinoma and adenocarcinoma[J]. Chinese Journal of Clinical and Experimental Pathology, 2012, 28(8): 918-920. [14] Moreno-Andrés D, Yokoyama H, Scheufen A, et al. VPS72/YL1-mediated H2A.Z deposition is required for nuclear reassembly after mitosis[J]. Cells, 2020, 9(7): 1702. doi:10.3390/cells9071702. [15] Cai Y, Jin JJ, Florens L, et al. The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes[J]. J Biol Chem, 2005, 280(14): 13665-13670. [16] Latrick CM, Marek M, Ouararhni K, et al. Molecular basis and specificity of H2A.Z-H2B recognition and deposition by the histone chaperone YL1[J]. Nat Struct Mol Biol, 2016, 23(4): 309-316. [17] 管晓翔, 陈龙邦. 组蛋白乙酰化修饰在基因表达调控中的作用机制[J]. 中华肿瘤防治杂志, 2007, 14(4): 307-310. GUAN Xiaoxiang, CHEN Longbang. Role of histone acetylation modification in posttranscriptional gene expression[J]. Chinese Journal of Cancer Prevention and Treatment, 2007, 14(4): 307-310. [18] Lin Y, Liang R, Qiu YF, et al. Expression and gene regulation network of RBM8A in hepatocellular carcinoma based on data mining[J]. Aging, 2019, 11(2): 423-447. [19] 魏小勇, 黎才海, 饶荣生. p38 MAPK信号通路与肿瘤的关系[J]. 实用癌症杂志, 2009, 24(1): 101-103. WEI Xiaoyong, LI Caihai, RAO Rongsheng. Relationship between p38 MAPK signal pathway and tumor[J]. Practical Journal of Cancer, 2009, 24(1): 101-103. [20] Fan YM, Liu B, Chen F, et al. Hepcidin upregulation in lung cancer: a potential TherapeuticTarget associated with immune infiltration[J]. Front Immunol, 2021, 12: 612144. doi:10.3389/fimmu.2021.612144. [21] 韦燕琳, 李梅华. SIRT1基因与肺癌免疫浸润水平及临床预后分析[J]. 广西医科大学学报, 2020, 37(6): 1095-1100. WEI Yanlin, LI Meihua. Analysis of the relationship between SIRT1 gene and immune infiltration level and clinical prognosis of lung cancer[J]. Journal of Guangxi Medical University, 2020, 37(6): 1095-1100. [22] 高维龙, 梁贵友, 郭强, 等. 预后标志物STEAP与肺腺癌免疫浸润相关[J]. 中国免疫学杂志, 2021, 37(19): 2357-2363, 2369. GAO Weilong, LIANG Guiyou, GUO Qiang, et al. Prognostic marker STEAP1 is correlated with immune infiltration of lung adenocarcinoma[J]. Chinese Journal of Immunology, 2021, 37(19): 2357-2363, 2369. [23] Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 17(12): 887-904. [24] Kargl J, Busch SE, Yang GH, et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer[J]. Nat Commun, 2017, 8: 14381. doi:10.1038/ncomms14381. [25] Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer[J]. Nat Rev Clin Oncol, 2019, 16(10): 601-620. |
[1] | 刘士标,张淑君,李培龙,杜鲁涛,王传新. cg20657709位点甲基化对肺腺癌早期诊断的初步探讨[J]. 山东大学学报 (医学版), 2023, 61(4): 18-25. |
[2] | 常晴,刘佳,曲爱林,杨咏梅. 利用数据库信息分析NAMPT与肝癌的病理特征和免疫浸润的关联性[J]. 山东大学学报 (医学版), 2023, 61(4): 26-36. |
[3] | 洪慧,张卫海,李惠娴,李伟伟,张金岭. 异时性阑尾印戒细胞癌合并肺腺癌双原发癌1例[J]. 山东大学学报 (医学版), 2022, 60(8): 130-132. |
[4] | 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58. |
[5] | 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28. |
[6] | 柴小雪,叶辉,吕欣然,丁续超,甄秋来,杜娟,曹莉莉. POU4F3表达对118例肺腺癌患者预后评估及对肺腺癌细胞株迁移的影响[J]. 山东大学学报 (医学版), 2021, 59(11): 8-18. |
[7] | 杨秀婷,刘启功,左萍,刘正湘,左后娟. CD151-MUT突变对肺腺癌细胞A549迁移的影响及机制[J]. 山东大学学报 (医学版), 2020, 58(3): 81-86. |
[8] | 郑清月,赵秋红,渠香云,董肇楠,马雪情,贾云莉. 血清外泌体miR-205-5p/miR-152-5p对早期非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(10): 101-106. |
[9] | 谢厚耐,李猛,许林,王晖,彭岳,彭忠民. 吉非替尼对比培美曲塞联合顺铂治疗术后EGFR突变阳性Ⅱ~ⅢA期肺腺癌的临床分析[J]. 山东大学学报 (医学版), 2018, 56(9): 29-34. |
[10] | 张智慧,王丽丽,高华,张健,李娟,李远,武春晓,卢志明. 肺腺癌中缺氧诱导因子-1α调控程序性死亡因子配体1的表达[J]. 山东大学学报(医学版), 2017, 55(4): 65-70. |
[11] | 唐曦,胡娅,徐炎华,汪春林,邱萍,王向辉. MiR- 498通过下调FOXM1抑制肺腺癌细胞上皮充质细胞转化[J]. 山东大学学报(医学版), 2017, 55(4): 39-43. |
[12] | 李学玲, 董西林, 岳英. 二甲双胍抑制裸鼠肺腺癌移植瘤生长的实验研究[J]. 山东大学学报(医学版), 2014, 52(S1): 1-2. |
[13] | 孙杰,牟晓燕,董雪丽. 舒尼替尼与吉西他滨联合及序贯应用对K-RAS突变A549细胞的影响[J]. 山东大学学报(医学版), 2014, 52(3): 45-49. |
[14] | 董雪丽,牟晓燕,刘庆亮,孙杰. 塞来昔布联合厄罗替尼对人肺癌裸鼠移植瘤生长及血管生成的影响[J]. 山东大学学报(医学版), 2013, 51(2): 49-52. |
[15] | 范恒建,张玉可,肖伟,张一,李海军,王得翔 . 肺腺癌患者外周血Treg和Th17细胞的变化及其对预后的影响[J]. 山东大学学报(医学版), 2012, 50(9): 73-78. |
|