山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (6): 10-21.doi: 10.6040/j.issn.1671-7554.0.2023.0167
• 基础医学 • 上一篇
郑荣慧1,李攀2,曹秀琴3,贺瑞霞1,陈民佳1,陈海霞1,杨志伟1
ZHENG Ronghui1, Li Pan2, CAO Xiuqin3, HE Ruixia1, CHEN Minjia1, CHEN Haixia1, YANG Zhiwei1
摘要: 目的 以SQSTM1蛋白(P62)基因敲除及过表达的RAW264.7小鼠巨噬细胞为研究对象,建立嗜肺军团菌感染巨噬细胞模型,观察细胞内细菌增殖情况以及自噬流和自噬小体的变化,检测自噬相关因子表达水平变化,探讨P62在嗜肺军团菌感染RAW264.7巨噬细胞自噬中的作用机制。 方法 嗜肺军团菌以感染复数10、50和100感染RAW264.7巨噬细胞组、KO-P62细胞组、OE-P62细胞组,同时以未加嗜肺军团菌感染作为对照组; 细菌增殖实验观察嗜肺军团菌在巨噬细胞内的增殖情况; 透射电镜观察嗜肺军团菌与细胞共培养12 h时RAW264.7巨噬细胞组、KO-P62细胞组、OE-P62细胞组的自噬小体、自噬溶酶体及相关细胞器等超微结构; pmCherry-C1-EGFP-LC3B双荧光指示系统检测巨噬细胞自噬流的变化;采用免疫印迹试验(Western blotting)及实时荧光定量(RT-qPCR)法检测RAW264.7巨噬细胞组、KO-P62细胞组、OE-P62细胞组P62、自噬相关基因AMBRA1、溶酶体关联膜蛋白2(LAMP2)、自噬相关蛋白5(Atg5)、自噬效应蛋白1(Beclin1)、自噬微管相关蛋白轻链3(LC3B)的表达水平。 结果 细菌增殖实验检测在RAW264.7细胞组内嗜肺军团菌的数量随着时间的增长逐渐增长,在KO-P62细胞组及OE-P62细胞组内嗜肺军团菌的数量随着时间的增长均逐渐减少; 透射电镜可观察到嗜肺军团菌感染RAW264.7细胞组后,自噬小体及自噬溶酶体减少,与RAW264.7细胞组相比,KO-P62细胞组及OE-P62细胞组自噬小体及自噬溶酶体均增多;pmCherry-C1-EGFP-LC3B双荧光指示系统检测自噬流结果显示,嗜肺军团菌感染RAW264.7 细胞组,自噬流均减弱,KO-P62细胞组及OE-P62细胞组自噬流增加; Western blotting及RT-qPCR结果显示,与RAW264.7细胞组相比:KO-P62细胞组Beclin1先升高后降低,P62基本不表达,LC3Ⅱ/Ⅰ比值、AMBRA1、LAMP2及Atg5蛋白表达均明显升高,差异有统计学意义(P<0.05);OE-P62细胞组Beclin1先降低后升高,P62、AMBRA1、LAMP2、Atg5及LC3Ⅱ/Ⅰ比值均明显上调,差异有统计学意义(P<0.05)。 结论 敲除、过表达P62均可抑制嗜肺军团菌在RAW264.7巨噬细胞内的增殖,促进自噬,其机制可能与Atg5-P62-AMBRA1信号通路有关。
中图分类号:
[1] Xi L, Peng M, Liu S, et al. Hypoxia-stimulated ATM activation regulates autophagy-associated exosome release from cancer-associated fibroblasts to promote cancer cell invasion [J]. Extracell Vesicles, 2021, 10(11): e12146. [2] Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response [J]. Virulence, 2021, 12(1): 1122-1144. [3] Omotade TO, Roy CR. Legionella pneumophila excludes autophagy adaptors from the ubiquitin-labeled vacuole in which it resides [J]. Infect Immun, 2020, 88(8): e00793-e00719. [4] Thomas DR, Newton P, Lau N, et al. Interfering with Autophagy: the opposing strategies deployed by and effector proteins [J]. Front Cell Infect Microbiol, 2020, 10: 599762. doi: 10.3389/fcimb.2020.599762. [5] Brown AS, Yang C, Hartland EL, et al.The regulation of acute immune responses to the bacterial lung pathogen Legionella pneumophila [J]. J Leukoc Biol, 2017, 101(4): 875-886. [6] Liu X, Shin S. Viewing Legionella pneumophila pathogenesis through an immunological lens [J]. J Mol Biol, 2019, 431(21): 4321-4344. [7] Deng ZQ, Lim J, Wang Q, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway [J]. Autophagy, 2020, 16(5): 917-931. [8] Berkamp S, Mostafavi S, Sachse C. Structure and function of p62/SQSTM1 in the emerging framework of phase separation [J]. Febs J, 2021, 288(24): 6927-6941. [9] Strappazzon F, Di Rita A, Peschiaroli A, et al. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy [J]. Cell Death Differ, 2020, 27(4): 1155-1168. [10] Kellermann M, Scharte F, Hensel M. Manipulation of host cell organelles by intracellular pathogens [J]. Int J MolSci, 2021, 22(12): 6484. [11] Emanuele S, Lauricella M, D'Anneo A, et al. p62: friend or foe? Evidences for oncoJanus and neuroJanus roles [J]. Int J Mol Sci, 2020, 21(14): E5029. [12] Abd El Maksoud AI, Elebeedy D, Abass NH, et al. Methylomic changes of autophagy-related genes by Legionella effector Lpg2936 in infected macrophages [J]. Front Cell Dev Biol, 2019, 7: 390. doi: 10.3389/fcell.2019.00390. [13] Tu W, Wang H, Li S, et al. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases [J]. Aging Dis, 2019, 10(3): 637-651. [14] Su H, Yang F, Fu R, et al. Cancer cells escape autophagy inhibition via NRF2-induced micropinocytosis [J]. Cancer Cell, 2021, 39(5): 678-693. [15] Wang F, Zhang Y, Shen J, et al. The ubiquitin E3 ligase TRIM21 promotes hepatocarcinogenesis by suppressing the p62-Keap1-Nrf2 antioxidant pathway [J]. Cell Mol Gastroenterol Hepatol, 2021, 11(5): 1369-1385. [16] He F, Huang Y, Song Z, et al. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance [J]. J Exp Med, 2021, 218(3): e20201416. [17] Fan P, Xie XH, Chen CH, et al. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy [J]. DNA Cell Biol, 2019, 38(1): 10-22. [18] Luo J, Wang L, Song L, et al. Exploitation of the host ubiquitin system: means by Legionella pneumophila [J]. Front Microbiol, 2021, 12: 790442. doi: 10.3389/fmicb.2021.790442. [19] Baechler BL, Bloemberg D, Quadrilatero J. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation [J]. Autophagy, 2019, 15(9): 1606-1619. [20] Qin QF, Li XJ, Li YS, et al. AMPK-ERK/CARM1 signaling pathways affect autophagy of hepatic cells in samples of liver cancer patients [J]. Front Oncol, 2019, 9: 1247. doi:10.3389/fonc.2019.01247. [21] Berkamp S, Mostafavi S, Sachse C. Structure and function of p62/SQSTM1 in the emerging framework of phase separation [J]. Febs J, 2021, 288(24): 6927-6941. [22] Jin JQ, Zhang L, Li XY, et al. Oxidative stress-CBP axis modulates MOB1 acetylation and activates the Hippo signaling pathway [J]. Nucleic Acids Res, 2022, 50(7): 3817-3834. [23] Galati S, Boni C, Gerra MC, et al. Autophagy: a player in response to oxidative stress and DNA damage[J]. Oxid Med Cell Longev, 2019, 2019: 5692958. doi: 10.1155/2019/5692958. [24] Jo H, Shim K, Jeoung D. Targeting HDAC6 to overcome autophagy-promoted anti-cancer drug resistance [J]. Int J Mol Sci, 2022, 23(17): 9592. [25] Casassa AF, Vanrell MC, Colombo MI, et al. Autophagy plays a protective role against Trypanosoma cruzi infection in mice [J]. Virulence, 2019, 10(1): 151-165. [26] Xu YF, Wan W. Acetylation in the regulation of autophagy [J]. Autophagy, 2023, 19(2): 379-387. [27] Feng X, Zhang H, Meng LB, et al. Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5 [J]. Autophagy, 2021, 17(3): 723-742. |
[1] | 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10. |
[2] | 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45. |
[3] | 姚雪,卢冉冉,孙淑玲,高翠平,肖茹,王书会. 风湿性心脏病患者瓣膜置换术后医院感染风险预测评分模型的构建[J]. 山东大学学报 (医学版), 2022, 60(6): 90-96. |
[4] | 王菊,高帅,范玉琛,王凯. 肝衰竭并发真菌感染综合治疗1例[J]. 山东大学学报 (医学版), 2022, 60(5): 125-128. |
[5] | 李艳丽,李燕,佘凯丽,刘盈,刘伟娟,李秀君,刘英慧. 山东省部分结核病定点医院护理人员潜伏感染现状及风险因素分析[J]. 山东大学学报 (医学版), 2022, 60(4): 107-112. |
[6] | 安袁笑雪,杜以明,田甜,张一,薛玉文. 肺炎奴卡菌合并天美奴卡菌肺部感染1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(3): 59-63. |
[7] | 吕岩红,张志勉. 2 809名体检人群中高血压与幽门螺杆菌感染的关联性[J]. 山东大学学报 (医学版), 2022, 60(2): 43-47. |
[8] | 王洲洋,江蓓,李宪花,甄军晖,杨向东,胡昭,刘广义,裴斐. 感染性心内膜炎、急性肾损伤伴PR3-ANCA阳性患者1例报道[J]. 山东大学学报 (医学版), 2022, 60(2): 60-64. |
[9] | 苏丽,曹亚文,刘耀敏,张国民,张建华,崔凤梅. 67例血培养阳性成人布鲁菌感染者的临床特征[J]. 山东大学学报 (医学版), 2022, 60(12): 94-100. |
[10] | 李燕,刘静,李娟,杨秋红. 50例孕产妇血流感染临床特征及胎盘病理分析[J]. 山东大学学报 (医学版), 2022, 60(1): 48-54. |
[11] | 毕凤英,闫冬勤,陈曦,罗丹. HIV感染者/艾滋病患者自杀死亡危险因素理论框架构建——基于扎根理论的定性研究[J]. 山东大学学报 (医学版), 2022, 60(1): 109-117. |
[12] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[13] | 王凤霞,王涛,刘晓. 格氏乳球菌致急性结石性胆囊炎1例[J]. 山东大学学报 (医学版), 2021, 59(6): 122-124. |
[14] | 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27. |
[15] | 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34. |
|