山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 71-79.doi: 10.6040/j.issn.1671-7554.0.2022.1238
• 临床医学 • 上一篇
王磊1,2,张帅1,刘钢2,由胜男1,王植2,朱珊2,陈超2,马信龙2,杨强2
WANG Lei1,2, ZHANG Shuai1, LIU Gang2, YOU Shengnan1, WANG Zhi2, ZHU Shan2, CHEN Chao2, MA Xinlong2, YANG Qiang2
摘要: 目的 探究使用Yolov5网络检测分类Modic改变(MCs)的性能,与基于Yolov5和Resnet34网络自动检测分类MCs方法进行比较。 方法 回顾性分析2020年6月至2021年6月接受MRI诊断且符合纳入和排除标准的MCs患者140例,其中男55例,女85例,25~89岁,平均(59.0±13.7)岁。在完成MRI影像的标注工作后,将标注后的MRI影像导入深度学习模型训练,使用医学数据常规增强和Mosaic数据增强进行数据扩充,降低训练数据集过少的因素;利用迁移学习的方法,解决网络在小数据集上过拟合的问题。采用平均精度(AP)、平均精度均值(mAP)、召回率、精确率、F1值等性能指标对两种方法诊断MCs进行评估并比较。 结果 Yolov5网络检测分类MCs时,mAP、召回率、精确率和F1值分别达到87.56%、82.05%、89.44%和0.845;Yolov5和Resnet34网络自动检测分类MCs时,召回率、精确率和F1值分别达到88.41%、88.68%和0.885。 结论 Yolov5网络可以帮助诊断腰椎MCs,使用Yolov5和Resnet34网络检测分类MCs时,模型诊断MCs的性能提升,进而表明Yolo系列网络可以为智能辅助诊断技术在脊柱领域的应用提供可能性。
中图分类号:
[1] Hartvigsen J, Hancock MJ, Kongsted A, et al. What low back pain is and why we need to pay attention[J]. Lancet, 2018, 391(10137): 2356-2367. [2] GBD 2013 DALYs and HALE Collaborators, Murray CJ, Barber RM, et al. Global, regional, and national disability-adjusted life years(DALYs)for 306 diseases and injuries and healthy life expectancy(HALE)for 188 countries, 1990-2013: quantifying the epidemiological transition[J]. Lancet, 2015, 386(10009): 2145-2191. [3] Shmagel A, Foloy R, Ibrahim H, et al. Epidemiology of Chronic Low Back Pain in US Adults: Data From the 2009-2010 National health and Nutrition Examination Survey[J]. Arthrit Care Res, 2016, 68(11): 1688-1694. [4] Karppinen J, Shen FH, Luk KD, et al. Management of degenerative disk disease and chronic low back pain[J]. Orthop Clin North Am, 2011, 42(4): 513-528. [5] Samartzis D, Borthakur A, Belfer I, et al. Novel diagnostic and therapeutic methods for disc degeneration and low back pain[J]. Spine J, 2015, 15(9): 1919-1932. [6] Wu A, March L, Zheng X, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017[J]. Ann Transl Med, 2020, 8(6): 299. [7] Liu J, Hao L, Suyou L, et al. Biomechanical properties of lumbar endplates and their correlation with MRI findings of lumbar degeneration[J]. J Biomech, 2016, 49(4): 586-593. [8] Brinjikji W, Diehn FE, Jarvik JG, et al. MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis[J]. AJNR Am J Neuroradiol, 2015, 36(12): 2394-2399. [9] Weishaupt D, Zanetti M, Hodler J, et al. Painful lumbar disk derangement: relevance of endplate abnormalities at MR imaging[J]. Radiology, 2001, 218(2): 420-427. [10] Kjaer P, Korsholm L, Bendix T, et al. Modic changes and their associations with clinical findings[J]. Eur Spine J, 2006, 15(9): 1312-1319. [11] Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging[J]. Radiology, 1988, 166(pt 1): 193-199. [12] Karchevsky M, Schweitzer ME, Carrino JA, et al. Reactive endplate marrow changes: a systematic morphologic and epidemiologic evaluation[J]. Skeletal Radiol, 2005, 34(3): 125-129. [13] Mera Y, Teraguchi M, Hashizume H, et al. Association between types of Modic changes in the lumbar region and low back pain in a large cohort: the Wakayama spine study[J]. Eur Spine J, 2021, 30(4): 1011-1017. [14] Yang X, Karis DSA, Vleggeert-Lankamp CLA. Association between Modic changes, disc degeneration, and neck pain in the cervical spine: a systematic review of literature[J]. Spine J, 2020, 20(5): 754-764. [15] Jensen TS, Karppinen J, Sorensen JS, et al. Vertebral endplate signal changes(Modic change): a systematic literature review of prevalence and association with non-specific low back pain[J]. Eur Spine J, 2008, 17(11): 1407-1422. [16] Conger A, Schuster NM, Cheng DS, et al. The effectiveness of intraosseous basivertebral nerve radiofrequency neurotomy for the treatment of chronic low back pain in patients with modic changes: a systematic review[J]. Pain Med, 2021, 22(5): 1039-1054. [17] Modic MT, Masaryk TJ, Ross JS, et al. Imaging of degenerative disk disease[J]. Radiology, 1988, 168(1): 177-186. [18] Setio AAA, Traverso A, de Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Med Image Anal, 2017, 42: 1-13. doi:10.1016/j.media.2017.06.015. [19] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. doi:10.1016/j.media.2017.07.005. [20] Ye JJ. Artificial intelligence for pathologists is not near: it is here: description of a prototype that can transform how we practice pathology tomorrow[J]. Arch Pathol Lab Med, 2015, 139(7): 929-935. [21] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. [22] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. [23] GitHub. YOLOV5-Master [EB/OL]. [2022-03-01]. Available online. https://github.com/ultralytics/yolov5.git/(accessed on 1 March 2022). [24] Yang L, Hanneke S, Carbonell J. A theory of transfer learning with applications to active learning[J]. Mach Learn, 2013, 90(2): 161-189. [25] Rosa G, Papa J, Marana A, et al. Fine-tuning convolutional neural networks using harmony search[C] //Prog Pattern Recognit Image Anal Comput Vis Appl, 2015: 683-690. doi:10.1007/978-3-319-25751-8_82. [26] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. http://image-net.org/challenges/LSVRC/2015/, http://mscoco.org/dataset/#detections-challenge2015. [27] Jamaludin A, Lootus M, Kadir T, et al. Issls prize in bioengineering science 2017: automation of reading of radiological features from magnetic resonance images(mris)of the lumbar spine without human intervention is comparable with an expert radiologist[J]. Eur Spine J, 2017, 26(5): 1374-1383. [28] Gao KT, Tibrewala R, Hess M, et al. Automatic detection and voxel-wise mapping of lumbar spine Modic changes with deep learning[J]. JOR Spine, 2022, 5(2): e1204. [29] Windsor R, Jamaludin A, Kadir T, et al. SpineNetV2: Automated detection, labelling and radiological grading of clinical mr scans[J]. EESS, 2022. doi:10.48550/arXiv.2205.01683. |
[1] | 杨咏青,赵鹏,汪玉,马文静,田迷迷,程亚旎,祖璐,林祥涛. 细胞外容积分数对62例不同病理类型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 88-94. |
[2] | 赵恩举,赵硕,郭云亮,王锡明. 282例颈动脉钙化与脑小血管病MRI总负荷评分的关联性[J]. 山东大学学报 (医学版), 2023, 61(1): 38-44. |
[3] | 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65. |
[4] | 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95. |
[5] | 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50. |
[6] | 刘学业,李齐明,唐弘毅,徐秋平,陈文倩,郭泾. 年轻成人颞下颌关节髁突体积、表面积与关节盘矢向位置的关系[J]. 山东大学学报 (医学版), 2021, 59(6): 117-121. |
[7] | 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55. |
[8] | 宋珍珍,孙小玲,李海鸥,王芳,张冉,于德新. 120例胶质瘤及瘤周水肿MRI影像组学在评估肿瘤复发中的价值[J]. 山东大学学报 (医学版), 2021, 59(11): 53-60. |
[9] | 陈晓丽,桂振朝,高杨,邢梦瑶,修建军. 13例涎腺导管癌的影像学表现分析[J]. 山东大学学报 (医学版), 2021, 59(1): 78-82. |
[10] | 孙珊珊,房雷,赵翠萍,钟庆,高翔,李玲. 伴可逆性后部脑病综合征MR表现的急性间歇性卟啉病1例报告并文献复习[J]. 山东大学学报 (医学版), 2020, 58(2): 118-121. |
[11] | 陆菁菁,夏宇. 子宫内膜异位症的影像学诊断[J]. 山东大学学报 (医学版), 2019, 57(6): 40-45. |
[12] | 张晓倩,孟祥水,任庆国,南晓敏,安盼盼,帅欣艳,夏晓娜,王璇. 磁共振波谱成像对检测非痴呆型血管性认知障碍的探讨[J]. 山东大学学报 (医学版), 2019, 57(4): 42-46. |
[13] | 张丽红,王林省,陈东风,陈月芹,李娴,刘艳杰,李磊. 肾脏混合性上皮间质瘤的CT和MRI表现[J]. 山东大学学报 (医学版), 2018, 56(7): 70-75. |
[14] | 张丽红,李娴,王林省,李宏磊,李磊. 含脂肪节细胞神经瘤的影像学表现与病理对照[J]. 山东大学学报 (医学版), 2018, 56(12): 73-78. |
[15] | 王玉红,张丽红,王林省,陈月芹,王彦辉,王皆欢,李传福. 消化道颗粒细胞瘤的影像学表现[J]. 山东大学学报(医学版), 2017, 55(8): 66-70. |
|