山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 63-70.doi: 10.6040/j.issn.1671-7554.0.2022.1421
• 基础医学 • 上一篇
张博1,高娜1,席瑞2,王协彬2
ZHANG Bo1, GAO Na1, XI Rui2, WANG Xiebin2
摘要: 目的 揭示工艺参数以及结构特征对激光粉末床熔融(L-PBF)制备的NiTi合金多孔支架组织性能的影响规律及机制,为制备高性能NiTi合金骨植入体提供基础。 方法 采用L-PBF工艺制备两组体心立方结构的多孔支架:(1)保持支架杆径200 μm不变,改变激光扫描速度500~1 000 mm/s,以研究激光扫描速度的影响;(2)保持L-PBF工艺参数不变,改变支架杆径150~500 μm,以研究结构特征的影响。采用扫描电子显微镜、差示扫描量热仪、力学试验机等方法研究NiTi合金多孔支架的显微组织、相变行为及力学性能。 结果 随激光扫描速度增加,支架的实际杆径减小,马氏体相变温度降低,压缩应力下降,循环压缩过程中可回复应变增加;随支架杆径增大,马氏体相变温度升高,循环压缩过程中的可回复应变减小,表现出明显的尺寸效应。 结论 L-PBF工艺参数及尺寸效应均会影响NiTi合金支架的组织与性能,为了制备符合预期性能的复杂NiTi合金骨植入体,需要根据不同部位的特征尺寸,优化L-PBF工艺参数。
中图分类号:
[1] Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Prog Mater Sci, 2005, 50(5): 511-678. [2] 徐祖耀, 江伯鸿, 杨大智, 等. 形状记忆材料[M]. 上海: 上海交通大学出版社, 2000. [3] Zheng YF, Zhang BB, Wang BL, et al. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag[J]. Acta Biomater, 2011, 7(6): 2758-2767. [4] 李文娇, 马春宝, 赵丙辉, 等. 镍钛形状记忆合金植入物在骨科的应用[J]. 生物骨科材料与临床研究, 2022, 19(1): 89-91. LI Wenjiao, MA Chunbao, ZHAO Binghui, et al. Application of nickel-titanium shape-memory alloy implant in orthopedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2022, 19(1): 89-91. [5] Bartolomeu F, Costa MM, Alves N, et al. Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants[J]. Opt Lasers Eng, 2020, 134: 106208. doi: 10.1016/j.optlaseng.2020.106208. [6] Oliveira JP, Miranda RM, Braz Fernandes FM. Welding and joining of NiTi shape memory alloys: a review[J]. Prog Mater Sci, 2017, 88: 412-466. doi: 10.1016/j.pmatsci.2017.04.008. [7] Hassan MR, Mehrpouya M, Dawood S. Review of the maching difficulties of nickel-titanium based shape memory alloys[J]. Appl Mech Mater, 2014, 564: 533-537. doi: 10.4028/www.scientific.net/AMM.564.533. [8] Wu JC, Mills A, Grant KD, et al. Fracture fixation using shape-memory(ninitol)staples[J]. Orthop Clin North Am, 2019, 50(3): 367-374. [9] 梁豪君, 李瑞延, 刘贯聪, 等. 医用骨科假体植入物多孔结构设计的研究和临床应用现状[J]. 中国组织工程研究, 2017, 21(15): 2410-2417. LIANG Haojun, LI Ruiyan, LIU Guancong, et al. Design of the porous orthopedic implants: research and application status[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(15): 2410-2417. [10] Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review[J]. Biomed Mater, 2020, 15(5): 052003. [11] 陈艺菲, 郑赛男, 阙林. 3D打印复合材料骨组织工程支架及其在颌面骨再生中的研究进展[J]. 山东医药, 2022, 62(25): 83-86. [12] 庄皓翔, 费琦, 杨雍. 3D打印技术在颈椎手术中的应用进展[J]. 颈腰痛杂志, 2022, 43(5): 760-762. HUANG Haoxiang, FEI Qi, YANG Yong. Application progress of 3D printing technology in cervical spine surgery[J]. The Journal of Cervicodynia And Lumbodynia, 2022, 43(5): 760-762. [13] DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Prog Mater Sci, 2018, 92: 112-224. doi:10.1016/j.pmatsci.2017.10.001. [14] Wang X, Yu J, Liu J, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting[J]. Addit Manuf, 2020, 36: 101545. doi: 10.1016/j.addma.2020.101545. [15] Xiong Z, Li Z, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect[J]. J Mater Sci Technol, 2019, 35(10): 2238-2242. [16] Xue L, Atli KC, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity[J]. Acta Mater, 2022, 229: 117781. doi:10.1016/j.actamat.2022.117781. [17] Fu J, Li H, Song X, et al. Multi-scale defects in powder-based additively manufactured metals and alloys[J]. J Mater Sci Technol, 2022, 122: 165-199. doi: 10.1016/j.jmst.2022.02.015. [18] 张晓刚, 李宗义, 刘艳, 等. 激光选区熔化纯铜成形件尺寸精度的研究[J]. 激光技术, 2017, 41(6): 852-857. ZHANG Xiaogang, LI Zongyi, LIU Yan, et al. Study on dimensional accuracy of pure copper forming parts by laser selective melting[J]. Laser Technology, 2017, 41(6): 852-857. [19] Xue L, Atli KC, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework[J]. Acta Mater, 2021, 215: 117017. doi: 10.1016/j.actamat.2021.117017. [20] Zhang Q, Hao S, Liu Y, et al. The microstructure of a selective laser melting(SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability[J]. Appl Mater Today, 2020, 19: 100547. doi: 10.1016/j.apmt.2019.100547. [21] Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science, 2019, 363: 849-852. doi: 10.1126/science.aav4687 [22] Wei M, Ding W, Vastola G, et al. Quantitative study on the dynamics of melt pool and keyhole and their controlling factors in metal laser melting[J]. Addit Manuf, 2022, 54: 102779. doi: 10.1016/j.addma.2022.102779. [23] King W, Barth H, Castillo V, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. J Mater Sci Technol, 2014, 214(12): 2915-2925. [24] Ye D, Li S, Misra R, et al. Ni-loss compensation and thermomechanical property recovery of 3D printed NiTi alloys by pre-coating Ni on NiTi powder[J]. Addit Manuf, 2021, 47: 102344. doi: 10.1016/j.addma.2021.102344. [25] Frenzel J, George EP, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J]. Acta Mater, 2010, 58(9): 3444-3458. [26] Elahinia M, Moghaddam NS, Andani MT, et al. Fabrication of NiTi through additive manufacturing: a review[J]. Prog Mater Sci, 2016, 83: 630-663. doi: 10.1016/j.pmatsci.2016.08.001. [27] Nasab MH, Gastaldi D, Lecis NF, et al. On morphological surface features of the parts printed by selective laser melting(SLM)[J]. Addit Manuf, 2018, 24: 373-377. doi: 10.1016/j.addma.2018.10.011. [28] Fan J, Zhang L, Wei S, et al. A review of additive manufacturing of metamaterials and developing trends[J]. Mater Today, 2021, 50: 303-328. doi: 10.1016/j.mattod.2021.04.019. [29] Shahabad SI, Ali U, Zhang Z, et al. On the effect of thin-wall thickness on melt pool dimensions in laser powder-bed fusion of Hastelloy X: Numerical modeling and experimental validation[J]. J Manuf Process, 2022, 75: 435-449. doi: 10.1016/j.jmapro.2022.01.029. [30] Promoppatum P, Taprachareon K, Chayasombat B, et al. Understanding size-dependent thermal, microstructural, mechanical behaviors of additively manufactured Ti-6Al-4V from experiments and thermo-metallurgical simulation[J]. J Manuf Process, 2022, 75: 1162-1174. doi: 10.1016/j.jmapro.2022.01.068. [31] Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Mater, 2016, 108: 36-45. doi: 10.1016/j.actamat.2016.02.014. [32] 边培莹, 尹恩怀. 选区激光熔化激光功率对316L不锈钢熔池形貌及残余应力的影响[J]. 激光与光电子学进展, 2020, 57(1): 137-143. BIAN Peiying, YIN Enhuai. Effect of laser power for metal selective laser melting on morphology of 316L stainless steel molten pool and residual stress[J]. Laser & Optoelectronics Progress, 2020, 57(1): 137-143. |
[1] | 李尚志, 刘海春, 武文亮, 曹聪, 陈允震. 机械应力作用下促进骨不连愈合的疗效[J]. 山东大学学报(医学版), 2015, 53(2): 22-26. |
[2] | 刘新宇,李冬来,赵文龙,王政,李超,王连雷,原所茂,田永昊. 机器人/导航辅助下椎弓根螺钉植入在脊柱畸形矫正中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 21-28. |
[3] | 陈炳荣,施勇旺,李嘉浩,翟吉良,刘梁,刘文勇,胡磊,赵宇. 基于支持向量机的脊柱离体组织电阻抗识别[J]. 山东大学学报 (医学版), 2023, 61(3): 57-62. |
[4] | 乔桦,李慧武. 膝关节置换手术机器人应用现状与研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 29-36. |
[5] | 杜付鑫,张体冲,李倩倩,宋锐. 脊柱手术机器人研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 46-56. |
|