山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (1): 27-31.doi: 10.6040/j.issn.1671-7554.0.2022.0708
• 临床医学 • 上一篇
张润知,顾慧,李亚妮,杨世锋,高艳,王箬芃,王锡明
ZHANG Runzhi, GU Hui, LI Yani, YANG Shifeng, GAO Yan, WANG Ruopeng, WANG Ximing
摘要: 目的 基于第三代双源冠状动脉CT血管成像(CCTA)图像获得冠状动脉周围脂肪衰减指数(FAI),探讨FAI与高危斑块及冠状动脉狭窄程度的关联。 方法 回顾性分析2020年1月至2021年6月于山东第一医科大学附属省立医院行CCTA检查的449例患者的临床资料。根据是否存在CT高危斑块,将患者分为高危斑块组(n=226)、非高危斑块组(n=223)。基于CCTA图像,测量右冠状动脉周围FAI,并进行两组间比较。利用受试者工作特征曲线(ROC)评估FAI及FAI联合狭窄程度对CT高危斑块的诊断价值。根据冠状动脉狭窄程度进一步将高危斑块组分为3组:组1(1%~49%)、组2(50%~99%)、组3(100%),计算各组间FAI值。 结果 高危斑块组与非高危斑块组的FAI值分别为(-81.54±7.46)HU、(-90.12±7.23)HU,差异具有统计学意义(P<0.001)。ROC结果显示,FAI及FAI联合狭窄程度诊断CT高危斑块的曲线下面积(AUC)分别为0.800、0.849,灵敏度分别为79.65%、80.53%,特异度分别为74.44%、79.37%。FAI诊断CT高危斑块的最佳阈值为-86.5 HU。高危斑块组中,不同狭窄程度组1~3 FAI值分别为:(-84.76±8.23)HU、(-80.41±6.59)HU、(-77.07±4.50)HU,差异具有统计学意义(P<0.001)。 结论 FAI作为新型影像标记物可监测冠状动脉炎症水平,其值越高,提示斑块风险越大。
中图分类号:
[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要 [J]. 中国循环杂志, 2021, 36(6): 521-545. The writing committee of the report on cardiovascular health and diseases in China. Report on cardiovascular health and diseases burden in China: an updated summary of 2020 [J]. Chinese Circulation Journal, 2021, 36(6): 521-545. [2] Akoumianakis I, Antoniades C. The interplay between adipose tissue and the cardiovascular system: Is fat always bad? [J]. Cardiovasc Res, 2017, 113(9): 999-1008. [3] Elnabawi YA, Oikonomou EK, Dey AK, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index [J]. JAMA Cardiol, 2019, 4(9): 885-891. [4] Dai X, Deng J, Yu M, et al. Perivascular fat attenuation index and high-risk plaque features evaluated by coronary ct angiography: Relationship with serum inflammatory marker level [J]. Int J Cardiovasc Imaging, 2020, 36(4): 723-730. [5] Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat [J]. Sci Transl Med, 2017, 9(398):eaal2658. doi: 10.1126/scitranslmed.aal2658. [6] Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk(the crisp ct study): a post-hoc analysis of prospective outcome data [J]. Lancet, 2018, 392(10151): 929-939. [7] Goeller M, Rahman Ihdayhid A, Cadet S, et al. Pericoronary adipose tissue and quantitative global non-calcified plaque characteristics from CT angiography do not differ in matched south Asian, east Asian and European-origin Caucasian patients with stable chest pain [J]. Eur J Radiol, 2020, 125: 108874. doi: 10.1016/j.ejrad.2020.108874. [8] 赵娜, 侯志辉, 安云强, 等. 基于冠状动脉CT血管成像的冠状动脉粥样硬化斑块量化特征及易损性的门诊队列研究 [J]. 中华放射学杂志, 2020, 54(5): 467-473. ZHAO Na, HOU Zhihui, AN Yunqiang, et al. Analysis of quantitative characteristics and vulnerability of coronary atherosclerotic plaques with distribution of age: based on an out-patient cohort study of coronary CT angiography [J]. Chinese Circulation Journal, 2020, 54(5): 467-473. [9] Small GR, Chow B. CT imaging of the vulnerable plaque [J]. Curr Treat Options Cardiovasc Med, 2017, 19(12): 92. doi: 10.1007/s11936-017-0592-9. [10] 周茜洋, 唐春香, 张龙江, 等. 冠状动脉周围脂肪影像学的研究进展[J]. 中华放射学杂志, 2021, 55(3): 320-323. ZHOU Qianyang, TANG Chunxiang, ZHANG Longjiang, et al. Progress of imaging pericoronary adipose tissue [J]. Chinese Circulation Journal, 2021, 55(3): 320-323. [11] Tanaka K, Fukuda D, Sata M. Roles of epicardial adipose tissue in the pathogenesis of coronary atherosclerosis- an update on recent findings [J]. Circ J, 2020, 85(1): 2-8. [12] Mushenkova NV, Summerhill VI, Zhang D, et al. Current advances in the diagnostic imaging of atherosclerosis: insights into the pathophysiology of vulnerable plaque [J]. Int J Mol Sci, 2020, 21(8): 2992. doi: 10.3390/ijms21082992. [13] Chen YD, Fang WY, Chen JY, et al. Chinese expert consensus on the non-invasive imaging examination pathways of stable coronary artery disease [J]. J Geriatr Cardiol, 2018, 15(1): 30-40. [14] Si N, Shi K, Li N, et al. Identification of patients with acute myocardial infarction based on coronary CT angiography: the value of pericoronary adipose tissue radiomics[J]. Eur Radiol, 2022. doi: 10.1007/s00330-022-08812-5. [15] Yan H, Zhao N, Geng W, et al. Pericoronary fat attenuation index and coronary plaque quantified from coronary computed tomography angiography identify ischemia-causing lesions [J]. Int J Cardiol, 2022, 357: 8-13. doi:10.1016/j.ijcard.2022.03.033. [16] Pergola V, Cabrelle G, Mattesi G, et al. Added value of CCTA-derived features to predict MACEs in stable patients undergoing coronary computed tomography [J]. Diagnostics(Basel), 2022, 12(6). doi: 10.3390/diagnostics12061446. [17] Sun JT, Sheng XC, Feng Q, et al. Pericoronary fat attenuation index is associated with vulnerable plaque components and local immune-inflammatory activation in patients with non-ST elevation acute coronary syndrome [J]. J Am Heart Assoc, 2022, 11(2): e022879. doi: 10.1161/JAHA.121.022879. [18] Goeller M, Achenbach S, Cadet S, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease [J]. JAMA Cardiol, 2018, 3(9): 858-863. [19] Goeller M, Tamarappoo BK, Kwan AC, et al. Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography [J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 636-643. [20] Zhu X, Chen X, Ma S, et al. Dual-layer spectral detector CT to study the correlation between pericoronary adipose tissue and coronary artery stenosis [J]. J Cardiothorac Surg, 2021, 16(1): 325. doi: 10.1186/s13019-021-01709-2. [21] Wen D, Xu Z, An R. et al. Predicting haemodynamic significance of coronary stenosis with radiomics-based pericoronary adipose tissue characteristics [J]. Clin Radiol, 2022, 77: e154-e161. doi: 10.1016/j.crad.2021.10.019. [22] Wen D, Li J, Ren J, et al. Pericoronary adipose tissue CT attenuation and volume: Diagnostic performance for hemodynamically significant stenosis in patients with suspected coronary artery disease [J]. Eur J Radiol, 2021, 140: 109740. doi: 10.1016/j.ejrad.2021.109740. |
[1] | 吴梦涛,吴鹏,杨燕菲,唐佃俊,苗祥岭,李凡东. CT静脉造影在诊治复发性下肢静脉曲张的应用[J]. 山东大学学报 (医学版), 2020, 1(9): 21-26. |
[2] | 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31. |
[3] | 严芳英,单晓兰,李静媛,张杰,闫雪芳,杨奕,卜培莉. 吡格列酮通过调控Sirt3改善高血压引起的心肌纤维化机制[J]. 山东大学学报(医学版), 2017, 55(5): 13-18. |
[4] | 魏丹丹,张澄. 血管紧张素Ⅳ型受体过表达对早期动脉粥样硬化斑块形成的影响[J]. 山东大学学报(医学版), 2016, 54(8): 1-5. |
[5] | 杨博,李平,孟立平,周昌钻,潘孙雷,池菊芳,郭航远. 依那普利抑制大鼠血管平滑肌细胞表型转化及可能的信号通路[J]. 山东大学学报(医学版), 2016, 54(2): 21-26. |
[6] | 潘艳艳,孙永超,赵翠芬,孔清玉. 波生坦治疗婴儿先心病合并肺动脉高压的临床观察[J]. 山东大学学报(医学版), 2016, 54(2): 53-56. |
[7] | 刘慧敏, 刘邓, 李晓宇, 邹淑奉, 姜黎民, 李玉环. 半边莲生物碱对肺动脉高压大鼠ET-1信号通路的影响[J]. 山东大学学报(医学版), 2015, 53(8): 1-4. |
[8] | 段瑞生. 他汀对动脉粥样硬化的免疫调节及其在临床应用中的思考[J]. 山东大学学报(医学版), 2015, 53(5): 1-4. |
[9] | 刘辉, 陈桐帅, 李娜, 王舒健, 李静媛, 卜培莉. Sirt3对人脐静脉内皮细胞衰老的影响[J]. 山东大学学报(医学版), 2015, 53(5): 41-45. |
[10] | 肖友为. 脑动静脉畸形介入治疗的临床护理体会[J]. 山东大学学报(医学版), 2014, 52(Z2): 165-166. |
[11] | 靳成伟, 李葵, 赵静, 岳欣, 尚嫄嫄, 韩露, 张运, 张薇, 马骁, 钟明. 外周血单核细胞甘油三酯水解酶的表达与代谢综合征的相关性[J]. 山东大学学报(医学版), 2014, 52(8): 39-42. |
[12] | 姜红梅1,2,陈文强1. 老年冠心病心衰患者运动康复治疗中心理干预的临床意义[J]. 山东大学学报(医学版), 2014, 52(4): 85-88. |
[13] | 郝凤成1,2,苏中华1,3. 自噬在ox-LDL诱导炎症反应中的保护作用[J]. 山东大学学报(医学版), 2014, 52(4): 30-34. |
[14] | 渠晶1,赵爱平1,丁卜同2,陈昀1,常亚丽1,郭农建1. 体内活化血小板表达CD40L及其对内皮细胞表达炎性因子的影响[J]. 山东大学学报(医学版), 2014, 52(3): 75-78. |
[15] | 郝青青1,2,3,张永欢1,2,3,于庆涛1,2,朱莉1,2,陈旭1,2,李树英1,2,王来城1,2,张月辉1,4,李瑞峰3,董波1,2. ACE2基因转染对ApoE-/-小鼠动脉硬化黏附分子的影响[J]. 山东大学学报(医学版), 2014, 52(3): 1-6. |
|