您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (3): 51-58.doi: 10.6040/j.issn.1671-7554.0.2021.0821

• • 上一篇    

基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型

郑昊天1*,王光辉1,2*,赵小刚3,王亚东1,曾榆凯1,杜贾军1,2   

  • 发布日期:2022-03-09
  • 通讯作者: 杜贾军. E-mail:dujiajun@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2021MH192);济南市临床医学科技创新计划(202019058)

A prognostic risk model for LKB1 mutant lung adenocarcinoma based on aberrant DNA methylation sites

ZHENG Haotian1*, WANG Guanghui1,2*, ZHAO Xiaogang3, WANG Yadong1, ZENG Yukai1, DU Jiajun1,2   

  1. 1. Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China;
    2. Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China;
    3. Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
  • Published:2022-03-09

摘要: 目的 构建DNA甲基化相关的肝激酶B1(LKB1)突变肺腺癌预后风险模型。 方法 下载并分析癌症基因组图谱(TCGA)数据库中RNA和甲基化测序数据。筛选甲基化调控显著影响预后的差异表达基因,构建预后风险模型,将LKB1突变肺腺癌患者分为高风险组和低风险组,并进行相关功能学分析。 结果 筛选出3个低甲基化高表达的预后相关基因并构建LKB1突变肺腺癌的预后风险模型。多因素COX回归分析表明,Risk score可作为独立预测因子(HR>2,P<0.001)。受试者工作特征曲线证实,Risk score比其他临床病理特征有更好的生存预测能力。功能分析表明,高风险LKB1突变肺腺癌患者促癌通路激活、免疫细胞浸润程度明显高于低风险患者。 结论 在LKB1突变肺腺癌中发掘了3个因异常甲基化而表达失调的分子标记物,据此构建的预后风险模型可以准确筛选LKB1突变肺腺癌患者中的高风险人群,提供生存预测,为LKB1突变肺腺癌的分子机制研究及临床预后分析提供新思路。

关键词: 肝激酶B1, 肺腺癌, DNA甲基化, 预后风险模型, 癌症基因组图谱

Abstract: Objective To construct a methylation-related prognostic risk model of liver kinase B1(LKB1)mutant lung adenocarcinoma. Methods The RNA and methylation sequencing data from the The Cancer Genome Atlas(TCGA)database were downloaded and analyzed. Differentially expressed genes that significantly affected the prognosis and were regulated by different methylation sites were screened out to construct a prognostic risk model. Then, the LKB1 mutant lung adenocarcinoma patients were divided into the high-risk group and low-risk group and the corresponding function was analyzed. Results Three prognostic-related genes with low methylation levels and high expression levels were screened out and a prognostic risk model of LKB1 mutant lung adenocarcinoma was constructed. Multivariate COX regression analysis showed that Risk score could be used as an independent predictor(HR>2, P<0.001). The receiver operating characteristic(ROC)curve confirmed that the Risk score had better survival predictive ability than other clinicopathological characteristics. The cancer-promoting pathway was activated in the high-risk group and the degree of immune cell infiltration was significantly higher than that in the low-risk group. Conclusion Three biomarkers due to aberrant methylation are discovered in LKB1 mutant lung adenocarcinomas. The prognostic risk model can accurately screen the high-risk population among patients with LKB1 mutant lung adenocarcinoma, and provides accurate survival predictions. The study provides new ideas for the molecular mechanism and the clinical prognosis analysis of LKB1 mutant lung adenocarcinoma.

Key words: Liver kinase B1, Lung adenocarcinoma, DNA methylation, Prognostic risk model, The Cancer Genome Atlas

中图分类号: 

  • R574
[1] Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments [J]. The Lancet, 2017, 389(10066): 299-311.
[2] Jordan EJ, Kim HR, Arcila ME, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies [J]. Cancer Discov, 2017, 7(6): 596-609.
[3] Yang Z, Liu B, Lin T, et al. Multiomics analysis on DNA methylation and the expression of both messenger RNA and microRNA in lung adenocarcinoma [J]. J Cell Physiol, 2019, 234(5): 7579-7586.
[4] Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing [J]. N Engl J Med, 2012, 366(10): 883-892.
[5] Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing [J]. Nature, 2011, 472(7341): 90-94.
[6] Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma [J]. Nature, 2014, 511(7511): 543-550.
[7] Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma [J]. Nature, 2008, 455(7216): 1069-1075.
[8] Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression [J]. Nat Rev Cancer, 2009, 9(8): 563-575.
[9] 马晴. LKB1抑制MMP1表达和肺癌细胞侵袭的分子机制 [D].天津:天津医科大学, 2016.
[10] Wu D, Gong C, Su C. Genome-wide analysis of differential DNA methylation in Silver-Russell syndrome [J]. Sci China Life Sci, 2017, 60(7): 692-699.
[11] Ferry L, Fournier A, Tsusaka T, et al. Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation [J]. Mol Cell, 2017, 67(4): 550-565.e5.
[12] Zheng X, Zhang N, Wu HJ, et al. Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies [J]. Genome Biol, 2017, 18(1): 17.
[13] 谭玉娥, 刘鑫. IRF4、ELMO1、CLIP4和MSC启动子甲基化水平在胃癌早期筛查中的应用价值分析 [J]. 河北医药, 2021, 43(2): 182-186. TAN Yue, LIU Xin. Application value of IRF4, ELMO1 and CLIP4 promoter methylation levels in early screening of gastric cancer [J]. Hebei Medical Journal, 2021, 43(2): 182-186.
[14] Rajaraman P, Anderson BO, Basu P, et al. Recommendations for screening and early detection of common cancers in India [J]. The Lancet Oncology, 2015, 16(7): e352-e361.
[15] Wei JH, Haddad A, Wu KJ, et al. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma [J]. Nat Commun, 2015, 6: 8699. doi: 10.1038/ncomms9699.
[16] Heyn H, Vidal E, Ferreira HJ, et al. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer [J]. Genome Biol, 2016, 17: 11. doi: 10.1186/s13059-016-0879-2.
[17] 朱良宇, 孙宏瑜, 周谦, 等. 利用数据库资料分析DNA甲基化调控AC004540.4表达水平与肝细胞癌预后相关性 [J]. 中华肿瘤防治杂志, 2021, 28(3): 205-211. ZHU Liangyu, SUN Hongyu, ZHOU Qian, et al. Analysis of the relationship of DNA methylation AX004540.4 expression with prognosis of hepatocellular carcinoma with database data [J]. Chinese Journal of Cancer Prevention and Treatment, 2021, 28(3): 205-211.
[18] Fang Q, Chen H. Development of a novel autophagy-related prognostic signature and nomogram for hepatocellular carcinoma [J]. Front Oncol, 2020, 10: 591356. doi: 10.3389/fonc.2020.591356. eCollection 2020.
[19] Li X, Jin F, Li Y. A novel autophagy-related lncRNA prognostic risk model for breast cancer [J]. J Cell Mol Med, 2021, 25(1): 4-14.
[20] Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression [J]. Cancer Research, 2019, 79(18): 4557-4566.
[21] Pitt JM, Marabelle A, Eggermont A, et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy [J]. Ann Oncol, 2016, 27(8): 1482-1492.
[22] Xu JY, Zhang C, Wang X, et al. Integrative proteomic characterization of human lung adenocarcinoma [J]. Cell, 2020, 182(1): 245-261.e17.
[23] Saito M, Suzuki H, Kono K, et al. Treatment of lung adenocarcinoma by molecular-targeted therapy and immunotherapy [J]. Surg Today, 2018, 48(1): 1-8.
[24] 高向征, 梁可莹, 梅圣圣, 等. 联合靶向免疫检查点CD47与PDL1的抗肿瘤研究进展 [J]. 中国细胞生物学学报, 2021, 43(4): 896-904. GAO Xiangzheng, LIANG Keying, MEI Shengsheng, et al. Anti-tumor progress on dual blockage of immune checkpoints CD47 and PDL1 [J]. Chinese Journal of Cell Biology, 2021, 43(4): 896-904.
[25] Cha YJ, Kim HR, Lee CY, et al. Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status [J]. Lung Cancer, 2016, 97: 73-80. doi: 10.1016/j.lungcan.2016.05.001.
[26] Teglasi V, Reiniger L, Fabian K, et al. Evaluating the significance of density, localization, and PD-1/PD-L1 immunopositivity of mononuclear cells in the clinical course of lung adenocarcinoma patients with brain metastasis [J]. Neuro Oncol, 2017, 19(8): 1058-1067.
[27] Thakur C, Chen F. Connections between metabolism and epigenetics in cancers [J]. Semin Cancer Biol, 2019, 57: 52-58. doi: 10.1016/j.semcancer.2019.06.006.
[28] Liu X, Fu J, Bi H, et al. DNA methylation of SFRP1, SFRP2, and WIF1 and prognosis of postoperative colorectal cancer patients [J]. BMC Cancer, 2019, 19(1): 1212.
[29] Liu P, Shen JK, Hornicek FJ, et al. Wnt inhibitory factor 1(WIF1)methylation and its association with clinical prognosis in patients with chondrosarcoma [J]. Sci Rep, 2017, 7(1): 1580.
[30] Stewart DJ. Wnt signaling pathway in non-small cell lung cancer [J]. J Natl Cancer Inst, 2014, 106(1): djt356.
[31] Marjanovic I, Karan-Djurasevic T, Kostic T, et al. Prognostic significance of combined BAALC and MN1 gene expression level in acute myeloid leukemia with normal karyotype [J]. Int J Lab Hematol, 2021, 43(3): 433-440.
[32] Hagag AA, Elshehaby WA, Hablas NM, et al. Role of BAALC gene in prognosis of acute lymphoblastic leukemia in Egyptian children [J]. Indian J Hematol Blood Transfus, 2018, 34(1): 54-61.
[33] Morita K, Masamoto Y, Kataoka K, et al. BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and KLF4 [J]. Leukemia, 2015, 29(11): 2248-2256.
[34] Zhang H, Wang Y, Zhang W, et al. BAALC-AS1/G3BP2/c-Myc feedback loop promotes cell proliferation in esophageal squamous cell carcinoma [J]. Cancer Commun(Lond), 2021, 41(3): 240-257.
[35] Zhang Y, Tang B, Song J, et al. Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression [J]. J Exp Clin Cancer Res, 2019, 38(1): 92.
[36] Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer [J]. Nat Rev Drug Discov, 2018, 17(12): 887-904.
[37] Di Vito C, Mikulak J, Zaghi E, et al. NK cells to cure cancer [J]. Semin Immunol, 2019, 41: 101272. doi: 10.1016/j.smim.2019.03.004.
[38] Thommen DS, Schumacher TN. T cell dysfunction in cancer [J]. Cancer Cell, 2018, 33(4): 547-562.
[1] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[2] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[3] 柴小雪,叶辉,吕欣然,丁续超,甄秋来,杜娟,曹莉莉. POU4F3表达对118例肺腺癌患者预后评估及对肺腺癌细胞株迁移的影响[J]. 山东大学学报 (医学版), 2021, 59(11): 8-18.
[4] 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28.
[5] 唐曦,胡娅,徐炎华,汪春林,邱萍,王向辉. MiR- 498通过下调FOXM1抑制肺腺癌细胞上皮充质细胞转化[J]. 山东大学学报(医学版), 2017, 55(4): 39-43.
[6] 张智慧,王丽丽,高华,张健,李娟,李远,武春晓,卢志明. 肺腺癌中缺氧诱导因子-1α调控程序性死亡因子配体1的表达[J]. 山东大学学报(医学版), 2017, 55(4): 65-70.
[7] 周雪,王燕蓉,田龙,马良宏,颜贝,田稼,张帆,周岳,王红燕. 冷冻复苏过程对人精子印记基因SNRPN和GRB10DNA甲基化及表达的影响[J]. 山东大学学报(医学版), 2017, 55(1): 54-59.
[8] 李学玲, 董西林, 岳英. 二甲双胍抑制裸鼠肺腺癌移植瘤生长的实验研究[J]. 山东大学学报(医学版), 2014, 52(S1): 1-2.
[9] 孙杰,牟晓燕,董雪丽. 舒尼替尼与吉西他滨联合及序贯应用对K-RAS突变A549细胞的影响[J]. 山东大学学报(医学版), 2014, 52(3): 45-49.
[10] 徐佳, 宋强 . 骨髓增生异常综合征患者RASSF1A基因启动子区甲基化及基因表达的缺失[J]. 山东大学学报(医学版), 2013, 51(2): 65-69.
[11] 董雪丽,牟晓燕,刘庆亮,孙杰. 塞来昔布联合厄罗替尼对人肺癌裸鼠移植瘤生长及血管生成的影响[J]. 山东大学学报(医学版), 2013, 51(2): 49-52.
[12] 陈海燕,姚树哲,张晓莹,张建平,张翠娟,张廷国. SOCS-3和3-OST-2基因甲基化在子宫内膜癌中的作用及其临床病理意义[J]. 山东大学学报(医学版), 2013, 51(06): 75-80.
[13] 范恒建,张玉可,肖伟,张一,李海军,王得翔 . 肺腺癌患者外周血Treg和Th17细胞的变化及其对预后的影响[J]. 山东大学学报(医学版), 2012, 50(9): 73-78.
[14] 刘海荣1,于金明2,李岩1,梁婧1,刘晓琳1. ER、PR、C-erB-2与肺腺癌骨转移的相关性研究[J]. 山东大学学报(医学版), 2012, 50(4): 91-.
[15] 马育华1,2, 郑燕3,郏雁飞3,汪运山3. EGFR与DEC1蛋白共表达促进肺腺癌肿瘤细胞淋巴结转移[J]. 山东大学学报(医学版), 2012, 50(3): 24-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!