山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (3): 51-58.doi: 10.6040/j.issn.1671-7554.0.2021.0821
• • 上一篇
郑昊天1*,王光辉1,2*,赵小刚3,王亚东1,曾榆凯1,杜贾军1,2
ZHENG Haotian1*, WANG Guanghui1,2*, ZHAO Xiaogang3, WANG Yadong1, ZENG Yukai1, DU Jiajun1,2
摘要: 目的 构建DNA甲基化相关的肝激酶B1(LKB1)突变肺腺癌预后风险模型。 方法 下载并分析癌症基因组图谱(TCGA)数据库中RNA和甲基化测序数据。筛选甲基化调控显著影响预后的差异表达基因,构建预后风险模型,将LKB1突变肺腺癌患者分为高风险组和低风险组,并进行相关功能学分析。 结果 筛选出3个低甲基化高表达的预后相关基因并构建LKB1突变肺腺癌的预后风险模型。多因素COX回归分析表明,Risk score可作为独立预测因子(HR>2,P<0.001)。受试者工作特征曲线证实,Risk score比其他临床病理特征有更好的生存预测能力。功能分析表明,高风险LKB1突变肺腺癌患者促癌通路激活、免疫细胞浸润程度明显高于低风险患者。 结论 在LKB1突变肺腺癌中发掘了3个因异常甲基化而表达失调的分子标记物,据此构建的预后风险模型可以准确筛选LKB1突变肺腺癌患者中的高风险人群,提供生存预测,为LKB1突变肺腺癌的分子机制研究及临床预后分析提供新思路。
中图分类号:
[1] Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments [J]. The Lancet, 2017, 389(10066): 299-311. [2] Jordan EJ, Kim HR, Arcila ME, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies [J]. Cancer Discov, 2017, 7(6): 596-609. [3] Yang Z, Liu B, Lin T, et al. Multiomics analysis on DNA methylation and the expression of both messenger RNA and microRNA in lung adenocarcinoma [J]. J Cell Physiol, 2019, 234(5): 7579-7586. [4] Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing [J]. N Engl J Med, 2012, 366(10): 883-892. [5] Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing [J]. Nature, 2011, 472(7341): 90-94. [6] Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma [J]. Nature, 2014, 511(7511): 543-550. [7] Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma [J]. Nature, 2008, 455(7216): 1069-1075. [8] Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression [J]. Nat Rev Cancer, 2009, 9(8): 563-575. [9] 马晴. LKB1抑制MMP1表达和肺癌细胞侵袭的分子机制 [D].天津:天津医科大学, 2016. [10] Wu D, Gong C, Su C. Genome-wide analysis of differential DNA methylation in Silver-Russell syndrome [J]. Sci China Life Sci, 2017, 60(7): 692-699. [11] Ferry L, Fournier A, Tsusaka T, et al. Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation [J]. Mol Cell, 2017, 67(4): 550-565.e5. [12] Zheng X, Zhang N, Wu HJ, et al. Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies [J]. Genome Biol, 2017, 18(1): 17. [13] 谭玉娥, 刘鑫. IRF4、ELMO1、CLIP4和MSC启动子甲基化水平在胃癌早期筛查中的应用价值分析 [J]. 河北医药, 2021, 43(2): 182-186. TAN Yue, LIU Xin. Application value of IRF4, ELMO1 and CLIP4 promoter methylation levels in early screening of gastric cancer [J]. Hebei Medical Journal, 2021, 43(2): 182-186. [14] Rajaraman P, Anderson BO, Basu P, et al. Recommendations for screening and early detection of common cancers in India [J]. The Lancet Oncology, 2015, 16(7): e352-e361. [15] Wei JH, Haddad A, Wu KJ, et al. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma [J]. Nat Commun, 2015, 6: 8699. doi: 10.1038/ncomms9699. [16] Heyn H, Vidal E, Ferreira HJ, et al. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer [J]. Genome Biol, 2016, 17: 11. doi: 10.1186/s13059-016-0879-2. [17] 朱良宇, 孙宏瑜, 周谦, 等. 利用数据库资料分析DNA甲基化调控AC004540.4表达水平与肝细胞癌预后相关性 [J]. 中华肿瘤防治杂志, 2021, 28(3): 205-211. ZHU Liangyu, SUN Hongyu, ZHOU Qian, et al. Analysis of the relationship of DNA methylation AX004540.4 expression with prognosis of hepatocellular carcinoma with database data [J]. Chinese Journal of Cancer Prevention and Treatment, 2021, 28(3): 205-211. [18] Fang Q, Chen H. Development of a novel autophagy-related prognostic signature and nomogram for hepatocellular carcinoma [J]. Front Oncol, 2020, 10: 591356. doi: 10.3389/fonc.2020.591356. eCollection 2020. [19] Li X, Jin F, Li Y. A novel autophagy-related lncRNA prognostic risk model for breast cancer [J]. J Cell Mol Med, 2021, 25(1): 4-14. [20] Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression [J]. Cancer Research, 2019, 79(18): 4557-4566. [21] Pitt JM, Marabelle A, Eggermont A, et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy [J]. Ann Oncol, 2016, 27(8): 1482-1492. [22] Xu JY, Zhang C, Wang X, et al. Integrative proteomic characterization of human lung adenocarcinoma [J]. Cell, 2020, 182(1): 245-261.e17. [23] Saito M, Suzuki H, Kono K, et al. Treatment of lung adenocarcinoma by molecular-targeted therapy and immunotherapy [J]. Surg Today, 2018, 48(1): 1-8. [24] 高向征, 梁可莹, 梅圣圣, 等. 联合靶向免疫检查点CD47与PDL1的抗肿瘤研究进展 [J]. 中国细胞生物学学报, 2021, 43(4): 896-904. GAO Xiangzheng, LIANG Keying, MEI Shengsheng, et al. Anti-tumor progress on dual blockage of immune checkpoints CD47 and PDL1 [J]. Chinese Journal of Cell Biology, 2021, 43(4): 896-904. [25] Cha YJ, Kim HR, Lee CY, et al. Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status [J]. Lung Cancer, 2016, 97: 73-80. doi: 10.1016/j.lungcan.2016.05.001. [26] Teglasi V, Reiniger L, Fabian K, et al. Evaluating the significance of density, localization, and PD-1/PD-L1 immunopositivity of mononuclear cells in the clinical course of lung adenocarcinoma patients with brain metastasis [J]. Neuro Oncol, 2017, 19(8): 1058-1067. [27] Thakur C, Chen F. Connections between metabolism and epigenetics in cancers [J]. Semin Cancer Biol, 2019, 57: 52-58. doi: 10.1016/j.semcancer.2019.06.006. [28] Liu X, Fu J, Bi H, et al. DNA methylation of SFRP1, SFRP2, and WIF1 and prognosis of postoperative colorectal cancer patients [J]. BMC Cancer, 2019, 19(1): 1212. [29] Liu P, Shen JK, Hornicek FJ, et al. Wnt inhibitory factor 1(WIF1)methylation and its association with clinical prognosis in patients with chondrosarcoma [J]. Sci Rep, 2017, 7(1): 1580. [30] Stewart DJ. Wnt signaling pathway in non-small cell lung cancer [J]. J Natl Cancer Inst, 2014, 106(1): djt356. [31] Marjanovic I, Karan-Djurasevic T, Kostic T, et al. Prognostic significance of combined BAALC and MN1 gene expression level in acute myeloid leukemia with normal karyotype [J]. Int J Lab Hematol, 2021, 43(3): 433-440. [32] Hagag AA, Elshehaby WA, Hablas NM, et al. Role of BAALC gene in prognosis of acute lymphoblastic leukemia in Egyptian children [J]. Indian J Hematol Blood Transfus, 2018, 34(1): 54-61. [33] Morita K, Masamoto Y, Kataoka K, et al. BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and KLF4 [J]. Leukemia, 2015, 29(11): 2248-2256. [34] Zhang H, Wang Y, Zhang W, et al. BAALC-AS1/G3BP2/c-Myc feedback loop promotes cell proliferation in esophageal squamous cell carcinoma [J]. Cancer Commun(Lond), 2021, 41(3): 240-257. [35] Zhang Y, Tang B, Song J, et al. Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression [J]. J Exp Clin Cancer Res, 2019, 38(1): 92. [36] Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer [J]. Nat Rev Drug Discov, 2018, 17(12): 887-904. [37] Di Vito C, Mikulak J, Zaghi E, et al. NK cells to cure cancer [J]. Semin Immunol, 2019, 41: 101272. doi: 10.1016/j.smim.2019.03.004. [38] Thommen DS, Schumacher TN. T cell dysfunction in cancer [J]. Cancer Cell, 2018, 33(4): 547-562. |
[1] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
[2] | 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39. |
[3] | 柴小雪,叶辉,吕欣然,丁续超,甄秋来,杜娟,曹莉莉. POU4F3表达对118例肺腺癌患者预后评估及对肺腺癌细胞株迁移的影响[J]. 山东大学学报 (医学版), 2021, 59(11): 8-18. |
[4] | 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28. |
[5] | 唐曦,胡娅,徐炎华,汪春林,邱萍,王向辉. MiR- 498通过下调FOXM1抑制肺腺癌细胞上皮充质细胞转化[J]. 山东大学学报(医学版), 2017, 55(4): 39-43. |
[6] | 张智慧,王丽丽,高华,张健,李娟,李远,武春晓,卢志明. 肺腺癌中缺氧诱导因子-1α调控程序性死亡因子配体1的表达[J]. 山东大学学报(医学版), 2017, 55(4): 65-70. |
[7] | 周雪,王燕蓉,田龙,马良宏,颜贝,田稼,张帆,周岳,王红燕. 冷冻复苏过程对人精子印记基因SNRPN和GRB10DNA甲基化及表达的影响[J]. 山东大学学报(医学版), 2017, 55(1): 54-59. |
[8] | 李学玲, 董西林, 岳英. 二甲双胍抑制裸鼠肺腺癌移植瘤生长的实验研究[J]. 山东大学学报(医学版), 2014, 52(S1): 1-2. |
[9] | 孙杰,牟晓燕,董雪丽. 舒尼替尼与吉西他滨联合及序贯应用对K-RAS突变A549细胞的影响[J]. 山东大学学报(医学版), 2014, 52(3): 45-49. |
[10] | 徐佳, 宋强 . 骨髓增生异常综合征患者RASSF1A基因启动子区甲基化及基因表达的缺失[J]. 山东大学学报(医学版), 2013, 51(2): 65-69. |
[11] | 董雪丽,牟晓燕,刘庆亮,孙杰. 塞来昔布联合厄罗替尼对人肺癌裸鼠移植瘤生长及血管生成的影响[J]. 山东大学学报(医学版), 2013, 51(2): 49-52. |
[12] | 陈海燕,姚树哲,张晓莹,张建平,张翠娟,张廷国. SOCS-3和3-OST-2基因甲基化在子宫内膜癌中的作用及其临床病理意义[J]. 山东大学学报(医学版), 2013, 51(06): 75-80. |
[13] | 范恒建,张玉可,肖伟,张一,李海军,王得翔 . 肺腺癌患者外周血Treg和Th17细胞的变化及其对预后的影响[J]. 山东大学学报(医学版), 2012, 50(9): 73-78. |
[14] | 刘海荣1,于金明2,李岩1,梁婧1,刘晓琳1. ER、PR、C-erB-2与肺腺癌骨转移的相关性研究[J]. 山东大学学报(医学版), 2012, 50(4): 91-. |
[15] | 马育华1,2, 郑燕3,郏雁飞3,汪运山3. EGFR与DEC1蛋白共表达促进肺腺癌肿瘤细胞淋巴结转移[J]. 山东大学学报(医学版), 2012, 50(3): 24-28. |
|