山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (1): 21-26.doi: 10.6040/j.issn.1671-7554.0.2021.1328
谢佳莹1,祁佳1,2,宋铭1,李育林1,王迪1,贾旭1,张薇1,钟明1,尚嫄嫄1
XIE Jiaying1, QI Jia1,2, SONG Ming1, LI Yulin1, WANG Di1, JIA Xu1, ZHANG Wei1, ZHONG Ming1, SHANG Yuanyuan1
摘要: 目的 探讨血清β-折叠水平与冠心病的相关性,分析影响β-折叠水平的各种危险因素。 方法 选取223例冠心病患者(冠心病组)和56例健康查体人群(正常对照组)为研究对象,记录各组临床基本资料,留取外周血标本,采用硫磺素T染色法检测血清β-折叠水平。比较两组基本资料、血清β-折叠水平,多因素Logistic回归分析β-折叠水平与冠心病的相关性。 结果 冠心病组血清ThT荧光强度明显增加(P<0.05或P<0.01);冠心病组血清β-折叠的水平与腰臀比、年龄、心率、舒张压、糖化血红白蛋白(HbA1c)、低密度脂蛋白胆固醇(LDL-C)、血钠(Na)、白细胞计数和乳酸脱氢酶(LDH)水平呈正相关(P<0.05或P<0.01),也与高血压病史、吸烟史、糖尿病病史、高血脂病史及冠心病家族史呈正相关(P<0.05或P<0.01);血清β-折叠水平、性别、收缩压、甘油三酯(TG)、血糖(Glu)、同型半胱氨酸(Hcy)是冠心病的独立危险因素(P<0.05或P<0.01)。 结论 冠心病患者中血清β-折叠水平明显升高,是冠心病的独立危险因素,并且血清β-折叠的作用独立于LDL-C。
中图分类号:
[1] Andersson C, Vasan RS. Epidemiology of cardiovascular disease in young individuals [J]. Nat Rev Cardiol, 2018, 15(4): 230-240. [2] Lozano R,Naghavi M,Foreman K,et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 [J]. Lancet, 2012, 380(9859): 2096-2128. [3] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. The Writing Committee Of The Report On Cardiovascular Health And Diseases In China. Report on cardiovascular health and diseases burden in China: an updated summary of 2020 [J]. Chinese Circulation Journal, 2021, 36(6): 521-545. [4] Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the global burden of disease study 2017 [J]. Lancet, 2019, 394(10204): 1145-1158. [5] Yang G, Wang Y, Zeng Y, et al. Rapid health transition in China, 1990-2010: findings from the global burden of disease study 2010 [J]. Lancet, 2013, 381(9882): 1987-2015. [6] 李明卓, 孙秀彬, 王春霞, 等. 血脂正常人群HDL-C 纵向变化与冠心病的关联性分析: 一项回顾性队列研究[J]. 山东大学学报(医学版), 2019, 57(8): 110-116. LI Mingzhuo, SUN Xiubin, WANG Chunxia, et al. Association between longitudinal changes of HDL-C and coronary heart disease in a population with normal serum lipids: a retrospective cohort study [J]. Journal of Shandong University(Health Science), 2019, 57(8): 110-116. [7] Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins [J]. Cell, 2015, 161(1): 161-172. [8] Ference BA, Graham I, Tokgozoglu L, et al. Impact of lipids on cardiovascular health: JACC health promotion series [J]. J Am Coll Cardiol, 2018, 72(10): 1141-1156. [9] Derosa G, Colletti A, Maffioli P, et al. Lipid-lowering nutraceuticals update on scientific evidence [J]. J Cardiovasc Med(Hagerstown), 2020, 21(11): 845-859. [10] Francula-Zaninovic S, Nola IA. Management of measurable variable cardiovascular disease risk factors [J]. Curr Cardiol Rev, 2018, 14(3): 153-163. [11] Chait A, Ginsberg HN, Vaisar T, et al. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease [J]. Diabetes, 2020, 69(4): 508-516. [12] Ajala ON, Everett BM. Targeting inflammation to reduce residual cardiovascular risk [J]. Curr Atheroscler Rep, 2020, 22(11): 66. [13] Asatryan L, Hamilton RT, Isas JM, et al. LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein [J]. J Lipid Res, 2005, 46(1): 115-122. [14] Wrobel TP, Majzner K, Baranska M. Protein profile in vascular wall of atherosclerotic mice analyzed ex vivo using FT-IR spectroscopy [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2012, 96: 940-945. doi: 10.1016/j.saa.2012.07.103. [15] Dehmer GJ, Blankenship JC, Cilingiroglu M, et al. SCAI/ACC/AHA expert consensus document: 2014 update on percutaneous coronary intervention without on-site surgical backup [J]. Circulation, 2014, 129(24): 2610-2626. [16] Parasassi T, Bittolo-Bon G, Brunelli R, et al. Loss of apoB-100 secondary structure and conformation in hydroperoxide rich, electronegative LDL(-)[J]. Free Radic Biol Med, 2001, 31(1): 82-89. [17] Gremer L, Schölzel D, Schenk C, et al. Fibril structure of amyloid-β(1-42)by cryo-electron microscopy [J]. Science, 2017, 358(6359): 116-119. [18] Alí-Torres J, Rimola A, Rodríguez-Rodríguez C, et al. Insights on the binding of thioflavin derivative markers to amyloid-like fibril models from quantum chemical calculations [J]. J Phys Chem B, 2013, 117(22): 6674-6680. [19] Handelsman Y, Jellinger PS, Guerin CK, et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the management of dyslipidemia and prevention of cardiovascular disease algorithm - 2020 executive summary [J]. Endocr Pract, 2020, 26(10): 1196-1224. [20] Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis [J]. Cell, 2011, 145(3): 341-355. [21] Sabatine MS, Wiviott SD, Im K, et al. Efficacy and safety of further lowering of low-density lipoprotein cholesterol in patients starting with very low levels: a meta-analysis [J]. JAMA Cardiol, 2018, 3(9): 823-828. [22] DuBroff R, Malhotra A, de Lorgeril M. Hit or miss: the new cholesterol targets [J]. BMJ Evid Based Med, 2020. doi: 10.1136/bmjebm-2020-111413. [23] Ursini F, Davies KJ, Maiorino M, et al. Atherosclerosis: another protein misfolding disease? [J]. Trends Mol Med, 2002, 8(8): 370-374. [24] Bucciantini M, Giannoni E, Chiti F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J]. Nature, 2002, 416(6880): 507-511. [25] Moore KJ, El Khoury J, Medeiros LA, et al. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid [J]. J Biol Chem, 2002, 277(49): 47373-47379. [26] Yu Q, Zhang Y, Xu CB. Apolipoprotein B, the villain in the drama? [J]. Eur J Pharmacol, 2015, 748: 166-169. doi: 10.1016/j.ejphar.2014.08.037. [27] Hamilton RT, Asatryan L, Nilsen JT, et al. LDL protein nitration: implication for LDL protein unfolding [J]. Arch Biochem Biophys, 2008, 479(1): 1-14. [28] Stewart CR, Tseng AA, Mok YF, et al. Oxidation of low-density lipoproteins induces amyloid-like structures that are recognized by macrophages [J]. Biochemistry, 2005, 44(25): 9108-9116. [29] Wrobel PT, Mateuszuk L, Chlopicki S, et al. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis [J]. Analyst, 2011, 136(24): 5247-5255. [30] Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity [J]. Nat Rev Immunol, 2013, 13(9): 621-634. |
[1] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
[2] | 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7. |
[3] | 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67-71. |
[4] | 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31. |
[5] | 李云霞,李洪凯,马韫韬,于媛媛,孙晓茹,刘新辉, 司书成,侯蕾,袁同慧,刘璐,李文超,薛付忠,刘言训. 基于两样本孟德尔随机化的身高和冠心病风险之间因果关系[J]. 山东大学学报 (医学版), 2020, 58(5): 107-114. |
[6] | 金海燕,张炎,马小莉,韩羽,赵蕙琛,刘元涛,张玉超. MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报 (医学版), 2020, 58(3): 94-98. |
[7] | 刘聪聪,陈晓璐,司书成,王博洁,李云霞,李文超,袁同慧,薛付忠. 山东省人群血清尿酸变异性与冠心病发病风险的关系[J]. 山东大学学报 (医学版), 2020, 58(12): 109-116. |
[8] | 李明卓,孙秀彬,王春霞,杨洋,刘新辉,刘言训,薛付忠,袁中尚. 血脂正常人群HDL-C纵向变化与冠心病的关联性分析:一项回顾性队列研究[J]. 山东大学学报 (医学版), 2019, 57(8): 110-116. |
[9] | 娄福臣,刘性祥,马国云,庄向华. 阿卡波糖对冠心病合并糖耐量受损患者YKL-40和肠道菌群的影响[J]. 山东大学学报 (医学版), 2019, 57(7): 86-91. |
[10] | 林伟强,王春霞,李明卓,孙秀彬,刘言训,薛付忠,袁中尚. 中老年人血压变化轨迹与冠心病发病的关系[J]. 山东大学学报 (医学版), 2019, 57(4): 106-112. |
[11] | 刘新辉,李洪凯,李明卓,于媛媛,司书成,侯蕾,刘璐,李文超,袁同慧,李云霞,周宇畅,薛付忠. 腰围和冠心病因果关系的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2019, 57(11): 103-109. |
[12] | 吴卫东,安珍,贵双俊,许洁,范威,宋杰. PM2.5暴露促进动脉粥样硬化发生发展的研究进展[J]. 山东大学学报 (医学版), 2018, 56(11): 18-26. |
[13] | 尹妮,杨关林,姜钧文,王春田,王凤耀,贾连群,高晓宇,潘嘉祥,李芹,李佳,冯元洁,高玉竹,周鹤,张哲. 巴马小型猪冠状动脉粥样硬化模型的评价方法[J]. 山东大学学报(医学版), 2017, 55(7): 1-5. |
[14] | 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71. |
[15] | 张云华,李杰. 颈动脉斑块内新生血管显影程度及血浆Lp-PLA2水平对急性脑梗死的临床诊断价值[J]. 山东大学学报(医学版), 2017, 55(3): 112-116. |
|