山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 110-116.doi: 10.6040/j.issn.1671-7554.0.2021.0939
史本康,陈守臻,曲思凤,王勇,刘磊
SHI Benkang, CHEN Shouzhen, QU Sifeng, WANG Yong, LIU Lei
摘要: 前列腺癌是男性最常见恶性肿瘤之一。部分前列腺癌患者疾病进展迅速,短时间内出现复发、转移以及耐药,导致预后不良。准确识别快速进展前列腺癌,采取相应的针对性治疗可使患者生存获益。论文对常见的快速进展前列腺癌类型及其临床、病理和分子学特征进行总结。
中图分类号:
[1] Merriel SWD, May MT, Martin RM. Predicting prostate cancer progression: protocol for a retrospective cohort study to identify prognostic factors for prostate cancer outcomes using routine primary care data [J]. BMJ Open, 2018, 8(1): e019409. doi: 10.1136/bmjopen-2017-019409. [2] Dong L, Zieren R, Xue W, et al. Metastatic prostate cancer remains incurable, why? [J]. Asian J Urol, 2019, 6(1): 26-41. [3] Semenas J, Allegrucci C, Boorjian SA, et al. Overcoming drug resistance and treating advanced prostate cancer [J]. Curr Drug Targets, 2012, 13(10): 1308-1323. [4] Ecke TH, Schlechte HH, Schiemenz K, et al. TP53 gene mutations in prostate cancer progression [J]. Anticancer Res, 2010, 30(5): 1579-1586. [5] Lozano R, Castro E, Aragón IM, et al. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer [J]. Br J Cancer, 2021, 124(3): 552-563. [6] Beltran H, Demichelis F. Therapy considerations in neuroendocrine prostate cancer: what next? [J] Endocr Relat Cancer, 2021, 28(8): T67-T78. [7] Alumkal JJ, Sun D, Lu E, et al. Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance [J]. Proc Natl Acad Sci U S A, 2020, 117(22): 12315-12323. [8] Porter LH, Bakshi A, Pook D, et al. Androgen receptor enhancer amplification in matched patient-derived xenografts of primary and castrate-resistant prostate cancer [J]. J Pathol, 2021, 254(2): 121-134. [9] Zhang Z, Zhou C, Li X, et al. Loss of CHD1 promotes heterogeneous mechanisms of resistance to AR-targeted therapy via chromatin dysregulation [J]. Cancer Cell, 2020, 37(4): 584-598.e11. [10] Zhang Y, Jin Z, Zhou H, et al. Suppression of prostate cancer progression by cancer cell stemness inhibitor napabucasin [J]. Cancer Med, 2016, 5(6): 1251-1258. [11] Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer [J]. Nat Rev Cancer, 2015, 15(12): 701-711. [12] Wang HT, Yao YH, Li BG, et al. Neuroendocrine Prostate Cancer(NEPC)progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis [J]. J Clin Oncol, 2014, 32(30): 3383-3390. [13] Zaffuto E, Pompe R, Zanaty M, et al. Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate cancer: a SEER database analysis [J]. Clin Genitourin Cancer, 2017, 15(5): e793-e800. [14] Vlachostergios PJ, Puca L, Beltran H, et al. Emerging variants of castration-resistant prostate cancer [J]. Curr Oncol Rep, 2017, 19(5): 32. doi: 10.1007/s11912-017-0593-6. [15] Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study [J]. J Clin Oncol, 2018, 36(24): 2492-2503. [16] Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer [J]. Proc Natl Acad Sci U S A, 2019, 116(23): 11428-11436. [17] Bluemn EG, Coleman IM, Lucas JM, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling [J]. Cancer Cell, 2017, 32(4): 474-489.e6. [18] Epstein JI, Amin MB, Beltran H, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation [J]. Am J Surg Pathol, 2014, 38(6): 756-767. [19] Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer [J]. Nat Med, 2016, 22(3): 298-305. [20] Zhou Z, Flesken-Nikitin A, Corney DC, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer [J]. Cancer Res, 2006, 66(16): 7889-7898. [21] Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance [J]. Science, 2017, 355(6320): 78-83. [22] Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets [J]. Cancer discovery, 2011, 1(6): 487-495. [23] Lee JK, Phillips JW, Smith BA, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells [J]. Cancer Cell, 2016, 29(4): 536-547. [24] Wang Y, Wang Y, Ci X, et al. Molecular events in neuroendocrine prostate cancer development [J]. Nat Rev Urol, 2021. doi: 10.1038/s41585-021-00490-0. [25] Tagawa ST. Neuroendocrine prostate cancer after hormonal therapy: knowing is half the battle [J]. J Clin Oncol, 2014, 32(30): 3360-3364. [26] Tritschler S, Erdelkamp R, Stief C, et al. [Neuroendocrine prostate cancer] [J]. Urologe A, 2017, 56(11): 1475-1484. [27] Amato RJ, Logothetis CJ, Hallinan R, et al. Chemotherapy for small cell carcinoma of prostatic origin [J]. J Urol, 1992, 147(3 Pt 2): 935-937. [28] Papandreou CN, Daliani DD, Thall PF, et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate [J]. J Clin Oncol, 2002, 20(14): 3072-3080. [29] Clarke CL, Graham JD. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes [J]. PLoS One, 2012, 7(4): e35859. doi: 10.1371/journal.pone.0035859. [30] Aparicio AM, Harzstark AL, Corn PG, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer [J]. Clin Cancer Res, 2013, 19(13): 3621-3630. [31] Fléchon A, Pouessel D, Ferlay C, et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer(mCRPC)with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group(GETUG)P01 trial [J]. Ann Oncol, 2011, 22(11): 2476-2481. [32] Culine S, Demery MEl, Lamy PJ, et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers [J]. J Urol, 2007, 178(3 Pt 1): 844-848. [33] Corn PG, Heath EI, Zurita A, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial [J]. Lancet Oncol, 2019, 20(10): 1432-1443. [34] Szentirmai E, Giannico GA. Intraductal carcinoma of the prostate [J]. Pathologica, 2020, 112(1): 17-24. [35] Kimura K, Tsuzuki T, Kato M, et al. Prognostic value of intraductal carcinoma of the prostate in radical prostatectomy specimens [J]. Prostate, 2014, 74(6): 680-687. [36] Dinerman BF, Khani F, Golan R, et al. Population-based study of the incidence and survival for intraductal carcinoma of the prostate [J]. Urol Oncol, 2017, 35(12): 673. [37] de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer [J]. N Engl J Med, 2020, 382(22): 2091-2102. [38] Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer [J]. J Clin Oncol, 2013, 31(14): 1748-1757. [39] Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer [J]. N Engl J Med, 2015, 373(18): 1697-1708. [40] Abida W, Bryce AH, Vogelzang NJ, et al. 793PD-Preliminary results from TRITON2: a phase II study of rucaparib in patients(pts)with metastatic castration-resistant prostate cancer(mCRPC)associated with homologous recombination repair(HRR)gene alterations [J]. Annals of Oncology, 2018, 29(S8): viii272. [41] Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations(TOPARP-B): a multicentre, open-label, randomised, phase 2 trial [J]. Lancet Oncol, 2020, 21(1): 162-174. [42] Mota JM, Barnett E, Nauseef JT, et al. Platinum-based chemotherapy in metastatic prostate cancer with DNA repair gene alterations [J]. JCO Precis Oncol, 2020, 4: 355-366. doi: 10.1200/po.19.00346. [43] Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer [J]. N Engl J Med, 2016, 375(5): 443-453. [44] Antonarakis ES, Shaukat F, Velho PI, et al. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations [J]. Eur Urol, 2019, 75(3): 378-382. [45] Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types [J]. Nat Med, 2016, 22(11): 1342-1350. [46] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade [J]. Science, 2017, 357(6349): 409-413. [47] Robinson D, Allen EMV, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. [48] Rodrigues DN, Rescigno P, Liu D, et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer [J]. J Clin Invest, 2018, 128(10): 4441-4453. [49] Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making [J]. JCO Precis Oncol, 2017, 2017: PO.17.00029. doi: 10.1200/PO.17.00029. [50] Velho PI, Silberstein JL, Markowski MC, et al. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer [J]. Prostate, 2018, 78(5): 401-407. [51] Abida W, Cheng ML, Armenia J, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade [J]. JAMA Oncol, 2019, 5(4): 471-478. [52] Graff JN, Alumkal JJ, Drake CG, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer [J]. Oncotarget, 2016, 7(33): 52810-52817. [53] Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer [J]. Nature, 2012, 487(7406): 239-243. [54] Gan L, Chen S, Wang Y, et al. Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer [J]. Cancer Res, 2009, 69(21): 8386-8394. [55] Sharma A, Yeow WS, Ertel A, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression [J]. J Clin Investi, 2010, 120(12): 4478-4492. [56] Chen WS, Aggarwal R, Zhang L, et al. Genomic drivers of poor prognosis and enzalutamide resistance in metastatic castration-resistant prostate cancer [J]. Eur Urol, 2019, 76(5): 562-571. [57] Gerhardt J, Montani M, Wild P, et al. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer [J]. Am J Pathol, 2012, 180(12): 848-861. [58] Li J, Xu C, Lee HJ, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations [J]. Nature, 2020, 580(7801): 93-99. [59] Bernard D, Pourtier-Manzanedo A, Gil J. Myc confers androgen-independent prostate cancer cell growth [J]. J Clin Invest, 2003, 112(11): 1724-1731. [60] Ewing CM, Ray AM, Lange EM, et al. Germline mutations in HOXB13 and prostate-cancer risk [J]. N Engl J Med, 2012, 366(2): 141-149. [61] Wu YM, Cieslik M, Lonigro RJ, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer [J]. Cell, 2018, 173(7): 1770-1782.e14. [62] Rescigno P, Gurel B, Pereira R, et al. Characterizing CDK12-mutated prostate cancers [J]. Clin Cancer Res, 2021, 27(2): 566-574. |
[1] | 薛美娟,石艳,邵琳琳,王琳,张昀,张阿敏. 遗传性血栓性血小板减少性紫癜1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(3): 121-124. |
[2] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
[3] | 潘鹏飞,徐立升,纪坤乾,王得翔,李玉. 以呼吸衰竭起病的线粒体肌病1例及文献回顾[J]. 山东大学学报 (医学版), 2022, 60(2): 54-59. |
[4] | 孙宇,陈娜,马爱华. SLC35A2基因突变致先天性糖基化障碍1例[J]. 山东大学学报 (医学版), 2021, 59(4): 113-116. |
[5] | 黄秀丽,刘丙菊,孙立锋. PIK3CD基因突变致PI3Kδ过度活化综合征1例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(3): 107-112. |
[6] | 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 23-29. |
[7] | 刘娜,刘奇迹,牟凯,程翠云. EBF3基因杂合突变导致1例神经发育障碍综合征[J]. 山东大学学报 (医学版), 2020, 58(4): 105-109. |
[8] | 夏丹丹,王惠宇,许隽颖,刘超英,王润洁. 小肠神经内分泌肿瘤2例并文献回顾[J]. 山东大学学报 (医学版), 2020, 58(1): 87-90. |
[9] | 丁婷婷,邹东,刘浩辰. 一个非综合征型先天缺牙家系的MSX1基因突变分析[J]. 山东大学学报 (医学版), 2019, 57(4): 97-100. |
[10] | 窦春慧,邵建华,董学斌,张凌,陈萍,赵红玉,顾琳萍,孙琳,解杰,王敏,王娟,李娜,李凡,李大启. 骨髓增生异常综合征患者基因突变对地西他滨临床疗效的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 42-48. |
[11] | 张文慧,陈昀,常亚丽,周亚伟,房云海,张心声,郭农建. 山东省55例血友病A患者基因检测及分析[J]. 山东大学学报 (医学版), 2019, 57(12): 57-61. |
[12] | 胡丽萍,王乐,金亮,刘燕霞,崔东清,曹丽丽. SYNE1基因复合杂合突变导致常染色体隐性小脑共济失调1型病例报告并文献复习[J]. 山东大学学报 (医学版), 2019, 57(11): 78-82. |
[13] | 肖红梅. 卵母细胞成熟障碍研究进展[J]. 山东大学学报 (医学版), 2018, 56(4): 18-22. |
[14] | 刘连科, 邵明雯, 马兰, 孙婧, 管丹, 束永前. 食管癌伴神经内分泌分化的临床病理特点及诊断标志物[J]. 山东大学学报(医学版), 2015, 53(7): 87-91. |
[15] | 卢敏, 陈昀, 丁卜同, 常亚丽, 周亚伟, 赵爱平, 郭农建. 山东省乙型血友病患者的基因检测及分析[J]. 山东大学学报(医学版), 2015, 53(3): 87-92. |
|