您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 110-116.doi: 10.6040/j.issn.1671-7554.0.2021.0939

• 专家综述 • 上一篇    下一篇

临床常见快速进展前列腺癌临床特点及研究进展

史本康,陈守臻,曲思凤,王勇,刘磊   

  1. 山东大学齐鲁医院泌尿外科, 山东 济南 250012
  • 发布日期:2021-10-15
  • 通讯作者: 史本康. E-mail:bkang68@sdu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(81970661)

Research progress and clinical characteristics of clinical rapidly progressing prostate cancer

SHI Benkang, CHEN Shouzhen, QU Sifeng, WANG Yong, LIU Lei   

  1. Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2021-10-15

摘要: 前列腺癌是男性最常见恶性肿瘤之一。部分前列腺癌患者疾病进展迅速,短时间内出现复发、转移以及耐药,导致预后不良。准确识别快速进展前列腺癌,采取相应的针对性治疗可使患者生存获益。论文对常见的快速进展前列腺癌类型及其临床、病理和分子学特征进行总结。

关键词: 快速进展前列腺癌, 神经内分泌, 前列腺导管内癌, 基因突变

Abstract: Prostate cancer is one of the most common malignant tumors in men. Some prostate cancer patients experience rapid disease progression, with recurrence, metastasis and drug resistance in a short period of time, leading to a poor prognosis. Accurately identifying rapidly progressing prostate cancer and taking corresponding treatments can provide survival benefits. This review summarizes the common types of rapidly progressing prostate cancer and their clinical, pathological and molecular characteristics.

Key words: Rapidly progressing prostate cancer, Neuroendocrine, Intraductal carcinoma of the prostate, Gene mutation

中图分类号: 

  • R737.25
[1] Merriel SWD, May MT, Martin RM. Predicting prostate cancer progression: protocol for a retrospective cohort study to identify prognostic factors for prostate cancer outcomes using routine primary care data [J]. BMJ Open, 2018, 8(1): e019409. doi: 10.1136/bmjopen-2017-019409.
[2] Dong L, Zieren R, Xue W, et al. Metastatic prostate cancer remains incurable, why? [J]. Asian J Urol, 2019, 6(1): 26-41.
[3] Semenas J, Allegrucci C, Boorjian SA, et al. Overcoming drug resistance and treating advanced prostate cancer [J]. Curr Drug Targets, 2012, 13(10): 1308-1323.
[4] Ecke TH, Schlechte HH, Schiemenz K, et al. TP53 gene mutations in prostate cancer progression [J]. Anticancer Res, 2010, 30(5): 1579-1586.
[5] Lozano R, Castro E, Aragón IM, et al. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer [J]. Br J Cancer, 2021, 124(3): 552-563.
[6] Beltran H, Demichelis F. Therapy considerations in neuroendocrine prostate cancer: what next? [J] Endocr Relat Cancer, 2021, 28(8): T67-T78.
[7] Alumkal JJ, Sun D, Lu E, et al. Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance [J]. Proc Natl Acad Sci U S A, 2020, 117(22): 12315-12323.
[8] Porter LH, Bakshi A, Pook D, et al. Androgen receptor enhancer amplification in matched patient-derived xenografts of primary and castrate-resistant prostate cancer [J]. J Pathol, 2021, 254(2): 121-134.
[9] Zhang Z, Zhou C, Li X, et al. Loss of CHD1 promotes heterogeneous mechanisms of resistance to AR-targeted therapy via chromatin dysregulation [J]. Cancer Cell, 2020, 37(4): 584-598.e11.
[10] Zhang Y, Jin Z, Zhou H, et al. Suppression of prostate cancer progression by cancer cell stemness inhibitor napabucasin [J]. Cancer Med, 2016, 5(6): 1251-1258.
[11] Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer [J]. Nat Rev Cancer, 2015, 15(12): 701-711.
[12] Wang HT, Yao YH, Li BG, et al. Neuroendocrine Prostate Cancer(NEPC)progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis [J]. J Clin Oncol, 2014, 32(30): 3383-3390.
[13] Zaffuto E, Pompe R, Zanaty M, et al. Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate cancer: a SEER database analysis [J]. Clin Genitourin Cancer, 2017, 15(5): e793-e800.
[14] Vlachostergios PJ, Puca L, Beltran H, et al. Emerging variants of castration-resistant prostate cancer [J]. Curr Oncol Rep, 2017, 19(5): 32. doi: 10.1007/s11912-017-0593-6.
[15] Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study [J]. J Clin Oncol, 2018, 36(24): 2492-2503.
[16] Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer [J]. Proc Natl Acad Sci U S A, 2019, 116(23): 11428-11436.
[17] Bluemn EG, Coleman IM, Lucas JM, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling [J]. Cancer Cell, 2017, 32(4): 474-489.e6.
[18] Epstein JI, Amin MB, Beltran H, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation [J]. Am J Surg Pathol, 2014, 38(6): 756-767.
[19] Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer [J]. Nat Med, 2016, 22(3): 298-305.
[20] Zhou Z, Flesken-Nikitin A, Corney DC, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer [J]. Cancer Res, 2006, 66(16): 7889-7898.
[21] Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance [J]. Science, 2017, 355(6320): 78-83.
[22] Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets [J]. Cancer discovery, 2011, 1(6): 487-495.
[23] Lee JK, Phillips JW, Smith BA, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells [J]. Cancer Cell, 2016, 29(4): 536-547.
[24] Wang Y, Wang Y, Ci X, et al. Molecular events in neuroendocrine prostate cancer development [J]. Nat Rev Urol, 2021. doi: 10.1038/s41585-021-00490-0.
[25] Tagawa ST. Neuroendocrine prostate cancer after hormonal therapy: knowing is half the battle [J]. J Clin Oncol, 2014, 32(30): 3360-3364.
[26] Tritschler S, Erdelkamp R, Stief C, et al. [Neuroendocrine prostate cancer] [J]. Urologe A, 2017, 56(11): 1475-1484.
[27] Amato RJ, Logothetis CJ, Hallinan R, et al. Chemotherapy for small cell carcinoma of prostatic origin [J]. J Urol, 1992, 147(3 Pt 2): 935-937.
[28] Papandreou CN, Daliani DD, Thall PF, et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate [J]. J Clin Oncol, 2002, 20(14): 3072-3080.
[29] Clarke CL, Graham JD. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes [J]. PLoS One, 2012, 7(4): e35859. doi: 10.1371/journal.pone.0035859.
[30] Aparicio AM, Harzstark AL, Corn PG, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer [J]. Clin Cancer Res, 2013, 19(13): 3621-3630.
[31] Fléchon A, Pouessel D, Ferlay C, et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer(mCRPC)with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group(GETUG)P01 trial [J]. Ann Oncol, 2011, 22(11): 2476-2481.
[32] Culine S, Demery MEl, Lamy PJ, et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers [J]. J Urol, 2007, 178(3 Pt 1): 844-848.
[33] Corn PG, Heath EI, Zurita A, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial [J]. Lancet Oncol, 2019, 20(10): 1432-1443.
[34] Szentirmai E, Giannico GA. Intraductal carcinoma of the prostate [J]. Pathologica, 2020, 112(1): 17-24.
[35] Kimura K, Tsuzuki T, Kato M, et al. Prognostic value of intraductal carcinoma of the prostate in radical prostatectomy specimens [J]. Prostate, 2014, 74(6): 680-687.
[36] Dinerman BF, Khani F, Golan R, et al. Population-based study of the incidence and survival for intraductal carcinoma of the prostate [J]. Urol Oncol, 2017, 35(12): 673.
[37] de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer [J]. N Engl J Med, 2020, 382(22): 2091-2102.
[38] Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer [J]. J Clin Oncol, 2013, 31(14): 1748-1757.
[39] Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer [J]. N Engl J Med, 2015, 373(18): 1697-1708.
[40] Abida W, Bryce AH, Vogelzang NJ, et al. 793PD-Preliminary results from TRITON2: a phase II study of rucaparib in patients(pts)with metastatic castration-resistant prostate cancer(mCRPC)associated with homologous recombination repair(HRR)gene alterations [J]. Annals of Oncology, 2018, 29(S8): viii272.
[41] Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations(TOPARP-B): a multicentre, open-label, randomised, phase 2 trial [J]. Lancet Oncol, 2020, 21(1): 162-174.
[42] Mota JM, Barnett E, Nauseef JT, et al. Platinum-based chemotherapy in metastatic prostate cancer with DNA repair gene alterations [J]. JCO Precis Oncol, 2020, 4: 355-366. doi: 10.1200/po.19.00346.
[43] Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer [J]. N Engl J Med, 2016, 375(5): 443-453.
[44] Antonarakis ES, Shaukat F, Velho PI, et al. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations [J]. Eur Urol, 2019, 75(3): 378-382.
[45] Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types [J]. Nat Med, 2016, 22(11): 1342-1350.
[46] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade [J]. Science, 2017, 357(6349): 409-413.
[47] Robinson D, Allen EMV, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228.
[48] Rodrigues DN, Rescigno P, Liu D, et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer [J]. J Clin Invest, 2018, 128(10): 4441-4453.
[49] Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making [J]. JCO Precis Oncol, 2017, 2017: PO.17.00029. doi: 10.1200/PO.17.00029.
[50] Velho PI, Silberstein JL, Markowski MC, et al. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer [J]. Prostate, 2018, 78(5): 401-407.
[51] Abida W, Cheng ML, Armenia J, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade [J]. JAMA Oncol, 2019, 5(4): 471-478.
[52] Graff JN, Alumkal JJ, Drake CG, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer [J]. Oncotarget, 2016, 7(33): 52810-52817.
[53] Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer [J]. Nature, 2012, 487(7406): 239-243.
[54] Gan L, Chen S, Wang Y, et al. Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer [J]. Cancer Res, 2009, 69(21): 8386-8394.
[55] Sharma A, Yeow WS, Ertel A, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression [J]. J Clin Investi, 2010, 120(12): 4478-4492.
[56] Chen WS, Aggarwal R, Zhang L, et al. Genomic drivers of poor prognosis and enzalutamide resistance in metastatic castration-resistant prostate cancer [J]. Eur Urol, 2019, 76(5): 562-571.
[57] Gerhardt J, Montani M, Wild P, et al. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer [J]. Am J Pathol, 2012, 180(12): 848-861.
[58] Li J, Xu C, Lee HJ, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations [J]. Nature, 2020, 580(7801): 93-99.
[59] Bernard D, Pourtier-Manzanedo A, Gil J. Myc confers androgen-independent prostate cancer cell growth [J]. J Clin Invest, 2003, 112(11): 1724-1731.
[60] Ewing CM, Ray AM, Lange EM, et al. Germline mutations in HOXB13 and prostate-cancer risk [J]. N Engl J Med, 2012, 366(2): 141-149.
[61] Wu YM, Cieslik M, Lonigro RJ, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer [J]. Cell, 2018, 173(7): 1770-1782.e14.
[62] Rescigno P, Gurel B, Pereira R, et al. Characterizing CDK12-mutated prostate cancers [J]. Clin Cancer Res, 2021, 27(2): 566-574.
[1] 薛美娟,石艳,邵琳琳,王琳,张昀,张阿敏. 遗传性血栓性血小板减少性紫癜1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(3): 121-124.
[2] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[3] 潘鹏飞,徐立升,纪坤乾,王得翔,李玉. 以呼吸衰竭起病的线粒体肌病1例及文献回顾[J]. 山东大学学报 (医学版), 2022, 60(2): 54-59.
[4] 孙宇,陈娜,马爱华. SLC35A2基因突变致先天性糖基化障碍1例[J]. 山东大学学报 (医学版), 2021, 59(4): 113-116.
[5] 黄秀丽,刘丙菊,孙立锋. PIK3CD基因突变致PI3Kδ过度活化综合征1例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(3): 107-112.
[6] 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 23-29.
[7] 刘娜,刘奇迹,牟凯,程翠云. EBF3基因杂合突变导致1例神经发育障碍综合征[J]. 山东大学学报 (医学版), 2020, 58(4): 105-109.
[8] 夏丹丹,王惠宇,许隽颖,刘超英,王润洁. 小肠神经内分泌肿瘤2例并文献回顾[J]. 山东大学学报 (医学版), 2020, 58(1): 87-90.
[9] 丁婷婷,邹东,刘浩辰. 一个非综合征型先天缺牙家系的MSX1基因突变分析[J]. 山东大学学报 (医学版), 2019, 57(4): 97-100.
[10] 窦春慧,邵建华,董学斌,张凌,陈萍,赵红玉,顾琳萍,孙琳,解杰,王敏,王娟,李娜,李凡,李大启. 骨髓增生异常综合征患者基因突变对地西他滨临床疗效的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 42-48.
[11] 张文慧,陈昀,常亚丽,周亚伟,房云海,张心声,郭农建. 山东省55例血友病A患者基因检测及分析[J]. 山东大学学报 (医学版), 2019, 57(12): 57-61.
[12] 胡丽萍,王乐,金亮,刘燕霞,崔东清,曹丽丽. SYNE1基因复合杂合突变导致常染色体隐性小脑共济失调1型病例报告并文献复习[J]. 山东大学学报 (医学版), 2019, 57(11): 78-82.
[13] 肖红梅. 卵母细胞成熟障碍研究进展[J]. 山东大学学报 (医学版), 2018, 56(4): 18-22.
[14] 刘连科, 邵明雯, 马兰, 孙婧, 管丹, 束永前. 食管癌伴神经内分泌分化的临床病理特点及诊断标志物[J]. 山东大学学报(医学版), 2015, 53(7): 87-91.
[15] 卢敏, 陈昀, 丁卜同, 常亚丽, 周亚伟, 赵爱平, 郭农建. 山东省乙型血友病患者的基因检测及分析[J]. 山东大学学报(医学版), 2015, 53(3): 87-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[3] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[4] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[5] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[6] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[7] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .
[8] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[9] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[10] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .