山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 117-123.doi: 10.6040/j.issn.1671-7554.0.2021.0956
哈春芳1,2,李茹月3
HA Chunfang1,2, LI Ruyue3
摘要: 手术结合化疗是卵巢上皮性癌的主要治疗手段,其中以R0为目标的卵巢癌肿瘤细胞减灭术结合个体化的化疗方案的应用,使得部分患者5年生存率有了很大的提升。但是晚期患者的耐药与复发仍然是困扰广大临床医师与科研工作者的难题,而化疗耐药因其病因不清、机制复杂,是临床亟待解决的难题和热点。近年来围绕此问题开展的基础与临床相结合的卵巢癌耐药的机制研究主要包括药物转运、药物代谢、细胞凋亡、DNA损伤修复、表观遗传学改变等,细胞自噬、肿瘤代谢、肿瘤微环境及肿瘤干细胞等在卵巢癌耐药方面也发挥了重要作用,针对耐药机制的靶向药物治疗为提高化疗敏感性、改善患者预后提供了新的思路。
中图分类号:
[1] Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 41: 3-14. doi: 10.1016/j.bpobgyn.2016.08.006. [2] Kalayda GV, Wagner CH, Jaehde U. Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells [J]. J Inorg Biochem, 2012, 116: 1-10. doi: 10.1016/j.jinorgbio.2012.07.010. [3] Jandial DA, Brady WE, Howell SB, et al. A phase I pharmacokinetic study of intraperitoneal bortezomib and carboplatin in patients with persistent or recurrent ovarian cancer: an NRG Oncology/Gynecologic Oncology Group study [J]. Gynecol Oncol, 2017, 145(2): 236-242. [4] Lancaster CS, Sprowl JA, Walker AL, et al. Modulation of OATP1B-type transporter function alters cellular uptake and disposition of platinum chemotherapeutics [J]. Mol Cancer Ther, 2013, 12(8): 1537-1544. [5] Svoboda M, Wlcek K, Taferner B, et al. Expression of organic anion-transporting polypeptides 1B1 and 1B3 in ovarian cancer cells: relevance for paclitaxel transport [J]. Biomed Pharmacother, 2011, 65(6): 417-426. [6] Tong X, Zhao J, Zhang Y, et al. Expression levels of MRP1, GST-π, and GSK3β in ovarian cancer and the relationship with drug resistance and prognosis of patients [J]. Oncol Lett, 2019, 18(1): 22-28. [7] Guo W, Dong W, Li M, et al. Mitochondria P-glycoprotein confers paclitaxel resistance on ovarian cancer cells [J]. Onco Targets Ther, 2019, 12: 3881-3891. doi: 10.2147/OTT.S193433. [8] Gao B, Yang F, Chen W, et al. Multidrug resistance affects the prognosis of primary epithelial ovarian cancer [J]. Oncol Lett, 2019, 18(4): 4262-4269. [9] Zhao MD, Li JQ, Chen FY, et al. Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer [J]. Int J Nanomedicine, 2019, 14: 9453-9467. doi: 10.2147/IJN.S224579. [10] Dobiasová S, Reho rová K, Ku cerová D, et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential [J]. Antioxidants(Basel), 2020, 9(5): 455. doi: 10.3390/antiox9050455. [11] Kawahara B, Ramadoss S, Chaudhuri G, et al. Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein [J]. J Inorg Biochem, 2019, 191: 29-39. doi: 10.1016/j.jinorgbio.2018.11.003. [12] DeLoia JA, Zamboni WC, Jones JM, et al. Expression and activity of taxane-metabolizing enzymes in ovarian tumors [J]. Gynecol Oncol, 2008, 108(2): 355-360. [13] van Eijk M, Boosman RJ, Schinkel AH, et al. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes [J]. Cancer Chemother Pharmacol, 2019, 84(3): 487-499. [14] Yuan J, Lan H, Jiang X, et al. Bcl2 family: novel insight into individualized therapy for ovarian cancer(Review)[J]. Int J Mol Med, 2020, 46(4): 1255-1265. [15] Zhang Y, Huang F, Luo Q, et al. Inhibition of XIAP increases carboplatin sensitivity in ovarian cancer [J]. Onco Targets Ther, 2018, 11: 8751-8759. doi: 10.2147/OTT.S171053. [16] Li RH, Yue C, Wei BB, et al. [In vivo study of siRNA silencing XIAP gene to reverse taxol-resistance in human ovarian cancer cells] [J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2020, 51(3): 320-324. [17] Usman RM, Razzaq F, Akbar A, et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance [J]. Asia Pac J Clin Oncol, 2021, 17(3): 193-208. [18] Luan W, Pang Y, Li R, et al. Akt/mTOR-mediated autophagy confers resistance to BET inhibitor JQ1 in ovarian cancer [J]. Onco Targets The, 2019, 12: 8063-8074. doi: 10.2147/OTT.S220267. [19] Tan WX, Xu TM, Zhou ZL, et al. TRP14 promotes resistance to cisplatin by inducing autophagy in ovarian cancer [J]. Oncol Rep, 2019, 42(4): 1343-1354. [20] Wang J, Wu GS. Role of autophagy in cisplatin resistance in ovarian cancer cells [J]. J Biol Chem, 2014, 289(24): 17163-17173. [21] Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions [J]. Cancer Discov, 2019, 9(9): 1167-1181. [22] Dar S, Chhina J, Mert I, et al. Bioenergetic adaptations in chemoresistant ovarian cancer cells [J]. Sci Rep, 2017, 7(1): 8760. doi: 10.1038/s41598-017-09206-0. [23] Han CY, Patten DA, Lee SG, et al. p53 Promotes chemoresponsiveness by regulating hexokinase II gene transcription and metabolic reprogramming in epithelial ovarian cancer [J]. Mol Carcinog, 2019, 58(11): 2161-2174. [24] Bauerschlag DO, Maass N, Leonhardt P, et al. Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer [J]. J Transl Med, 2015, 13: 146. doi: 10.1186/s12967-015-0511-3. [25] Papaevangelou E, Almeida GS, Box C, et al. The effect of FASN inhibition on the growth and metabolism of a cisplatin-resistant ovarian carcinoma model [J]. Int J Cancer, 2018, 143(4): 992-1002. [26] Criscuolo D, Avolio R, Calice G, et al. Cholesterol homeostasis modulates platinum sensitivity in human ovarian cancer [J]. Cells, 2020, 9(4): 828. doi: 10.3390/cells9040828. [27] Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics [J]. Cell Death Dis, 2013, 4(3): e532. doi: 10.1038/cddis.2013.60. [28] Hudson CD, Savadelis A, Nagaraj AB, et al. Altered glutamine metabolism in platinum resistant ovarian cancer [J]. Oncotarget, 2016, 7(27): 41637-41649. [29] Masamha CP, LaFontaine P. Molecular targeting of glutaminase sensitizes ovarian cancer cells to chemotherapy [J]. J Cell Biochem, 2018,119(7): 6136-6145. [30] Schärer OD. Nucleotide excision repair in eukaryotes [J]. Cold Spring Harb Perspect Biol, 2013, 5(10): a012609. doi: 10.1101/cshperspect.a012609. [31] Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer [J]. Biomed Res Int, 2014, 2014: 150845. doi: 10.1155/2014/150845. [32] Guo J, Jin D, Wu Y, et al. Retraction notice to ‘The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells’ [EBioMedicine 35(2018)204-221] [J]. EBioMedicine, 2021, 63: 103168. doi: 10.1016/j.ebiom.2020.103168. [33] Bogush TA, Popova AS, Dudko EA, et al. ERCC1 as a marker of ovarian cancer resistance to platinum drugs[J]. Antibiot Khimioter, 2015, 60(3-4): 42-50. [34] Stefansson OA, Villanueva A, Vidal A, et al. BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer [J]. Epigenetics, 2012, 7(11): 1225-1229. [35] Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer [J]. Nature, 2015, 521(7553): 489-494. [36] Wong-Brown MW, van der Westhuizen A, Bowden NA. Targeting DNA repair in ovarian cancer treatment resistance [J]. Clin Oncol(R Coll Radiol), 2020, 32(8): 518-526. [37] Ali MW, Cacan E, Liu Y, et al. Transcriptional suppression, DNA methylation, and histone deacetylation of the regulator of G-protein signaling 10(RGS10)gene in ovarian cancer cells [J]. PLoS One, 2013, 8(3): e60185. doi: 10.1371/journal.pone.0060185. [38] Zeller C, Brown R. Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer [J]. Ther Adv Med Oncol, 2010, 2(5): 319-329. [39] Moufarrij S, Dandapani M, Arthofer E, et al. Epigenetic therapy for ovarian cancer: promise and progress [J]. Clin Epigenetics, 2019, 11(1): 7. doi: 10.1186/s13148-018-0602-0. [40] Mo L, Pospichalova V, Huang Z, et al. Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells [J]. PLoS One, 201, 10(7): e0131579. doi: 10.1371/journal.pone.0131579. [41] Tang J, Zhu J, Ye Y, et al. Inhibition LC3B can increase chemosensitivity of ovarian cancer cells [J]. Cancer Cell Int, 2019, 19: 199. doi: 10.1186/s12935-019-0921-z. [42] Nowak M, Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer [J]. Cells, 2020, 9(5): 1299. doi: 10.3390/cells9051299. [43] Zhang F, Cui JY, Gao HF, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer via CXCL12/CXCR4 axis [J]. Future Oncol, 2020, 16(32): 2619-2633. [44] Muñoz-Galván S, Carnero A. Targeting cancer stem cells to overcome therapy resistance in ovarian cancer [J]. Cells, 2020, 9(6): 1402. doi: 10.3390/cells9061402. [45] Pieterse Z, Amaya-Padilla MA, Singomat T, et al. Ovarian cancer stem cells and their role in drug resistance [J]. Int J Biochem Cell Biol, 2019, 106: 117-126. doi: 10.1016/j.biocel.2018.11.012. [46] Mihanfar A, Aghazadeh Attari J, Mohebbi I, et al. Ovarian cancer stem cell: a potential therapeutic target for overcoming multidrug resistance [J]. J Cell Physiol, 2019, 234(4): 3238-3253. [47] Keyvani V, Farshchian M, Esmaeili SA, et al. Ovarian cancer stem cells and targeted therapy [J]. J Ovarian Res, 2019, 12(1): 120. doi: 10.1186/s13048-019-0588-z. |
[1] | 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102. |
[2] | 王国云,潘臧钰. 子宫腺肌病动物模型研究进展[J]. 山东大学学报 (医学版), 2022, 60(7): 48-55. |
[3] | 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117. |
[4] | 郭孙伟,刘惜时. 子宫腺肌病发病机制和病理生理研究进展[J]. 山东大学学报 (医学版), 2022, 60(7): 6-19. |
[5] | 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109. |
[6] | 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12. |
[7] | 李燕,刘静,李娟,杨秋红. 50例孕产妇血流感染临床特征及胎盘病理分析[J]. 山东大学学报 (医学版), 2022, 60(1): 48-54. |
[8] | 鞠建华,杨镇业,李青连,韩亚楠,李艳青,乔伊君,杨虎,张华然. 微生物药物研究开发现状与思考[J]. 山东大学学报 (医学版), 2021, 59(9): 43-50. |
[9] | 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60. |
[10] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[11] | 罗湘杭,周若玙. 骨质疏松的病因及发病机制研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 10-14. |
[12] | 陈君宇, 曹冬焱. 以脑梗为首发的卵巢癌病例报告[J]. 山东大学学报 (医学版), 2021, 59(5): 110-112. |
[13] | 丁菲,姜洁. 姜黄素对子宫内膜癌孕激素抵抗的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 35-41. |
[14] | 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 23-29. |
[15] | 赵立红,赵书平,聂升刚,孙晶,姜同峰. 507例男性生殖道感染病原体分布及耐药特征[J]. 山东大学学报 (医学版), 2021, 59(1): 55-58. |
|