您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (8): 24-31.doi: 10.6040/j.issn.1671-7554.0.2021.0794

• 生殖免疫的基础与临床研究进展专题 • 上一篇    下一篇

母胎免疫调节机制的研究进展

乔宠,王婷婷   

  1. 中国医科大学附属盛京医院妇产科, 辽宁 沈阳 110004
  • 发布日期:2021-09-16
  • 通讯作者: 乔宠. E-mail:qiaochong2002@163.com
  • 基金资助:
    国家重点研发计划(2016YFC1000404);国家自然科学基金面上项目(81370735,81771610);盛京自由研究者基金(201706);辽宁省特聘教授(2017);沈阳市科技计划项目(20-205-4-004)

Research progress of maternal-fetal immunomodulatory mechanism

QIAO Chong, WANG Tingting   

  1. Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China
  • Published:2021-09-16

摘要: 母胎界面在对同种半异体胎儿产生耐受性的同时保持对感染的防御,在生殖学和免疫学引起了广泛关注。母胎界面是正常妊娠建立和维持的关键部位,主要由滋养细胞、蜕膜免疫细胞、蜕膜基质细胞共同组成,对母胎界面免疫机制的深入研究有助于进一步阐明人类妊娠并发症的发病机制。综述总结了近年来母胎免疫的研究成果,围绕母胎界面的关键细胞功能、细胞及细胞因子间相互作用进行说明,旨在此基础上阐述母胎免疫调节机制。

关键词: 母胎界面, 滋养细胞, 蜕膜免疫细胞

Abstract: The maternal-fetal interface develops tolerance to the homohemiallogeneic fetus while maintaining defense against infection, which has aroused great concern in reproduction and immunology. The maternal-fetal interface is a key site for the establishment and maintenance of normal pregnancy, which is composed of trophoblast cells, decidual immune cells and decidual stromal cells. Studies on the immune mechanism of the maternal-fetal interface help to elucidate the pathogenesis of many human pregnancy complications. In this paper, the research achievements of maternal-fetal immunity in recent years are summarized, and the key cellular functions of maternal-fetal interface and the interactions between cells and cytokines are described, aiming to elaborate the mechanism of maternal-fetal immune regulation.

Key words: Maternal-fetal interface, Trophoblast cell, Decidual immune cells

中图分类号: 

  • R714.03
[1] Beaman KD, Jaiswal MK, Katara GK, et al. Pregnancy is a model for tumors, not transplantation[J]. Am J Reprod Immunol, 2016, 76(1): 3-7.
[2] Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy[J]. Nat Rev Immunol, 2017, 17(8): 469-482.
[3] Schumacher A, Sharkey DJ, Robertson SA, et al. Immune cells at the fetomaternal Interface: how the microenvironment modulates immune cells to foster fetal development[J]. J Immunol, 2018, 201(2): 325-334.
[4] Moffett A, Loke C. Immunology of placentation in eutherian mammals[J]. Nat Rev Immunol, 2006, 6(8): 584-594.
[5] Ferreira LM, Meissner TB, Mikkelsen TS, et al. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface[J]. Proc Natl Acad Sci U S A, 2016, 113(19): 5364-5369.
[6] Gregori S, Amodio G, Quattrone F, et al. HLA-G orchestrates the early interaction of human trophoblasts with the maternal niche[J]. Front Immunol, 2015, 6: 128. doi:10.3389/fimmu.2015.00128.
[7] Ferreira LMR, Meissner TB, Tilburgs T, et al. HLA-G: at the interface of maternal-fetal tolerance[J]. Trends Immunol, 2017, 38(4): 272-286.
[8] Xu X, Zhou Y, Wei H. Roles of HLA-G in the maternal-fetal Immune microenvironment[J]. Front Immunol, 2020, 11: 592010. doi:10.3389/fimmu.2020.592010.
[9] 陈绣瑛, 黄丽丽. 人类白细胞抗原-G与母胎免疫耐受的关系[J]. 中国计划生育杂志, 2021, 29(6): 1302-1305. CHEN Xiuying, HUANG Lili. Association human leukocyte antigen-G and maternal-ketal immunotolerance[J]. Chinese Journal of Family Planning, 2021, 29(6): 1302-1305.
[10] Marcenaro E, Pesce S, Sivori S, et al. KIR2DS1-dependent acquisition of CCR7 and migratory properties by human NK cells interacting with allogeneic HLA-C2+ DCs or T-cell blasts[J]. Blood, 2013, 121(17): 3396-3401.
[11] Tilburgs T, Crespo AC, van der Zwan A, et al. Human HLA-G+ extravillous trophoblasts: immune-activating cells that interact with decidual leukocytes[J]. Proc Natl Acad Sci U S A, 2015, 112(23): 7219-7224.
[12] Papúchová H, Meissner TB, Li Q, et al. The dual role of HLA-C in tolerance and immunity at the maternal-fetal interface[J]. Front Immunol, 2019, 10: 2730. doi:10.3389/fimmu.2019.02730.
[13] Bulmer JN, Williams PJ, Lash GE. Immune cells in the placental bed[J]. Int J Dev Biol, 2010, 54(2-3): 281-294.
[14] Yang F, Zheng Q, Jin L. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface[J]. Front Immunol, 2019, 10: 2317. doi:10.3389/fimmu.2019.02317.
[15] Le Bouteiller P, Bensussan A. Up-and-down immunity of pregnancy in humans[J]. F1000Res, 2017, 6: 1216. doi:10.12688/f1000research.11690.1.
[16] Carlino C, Stabile H, Morrone S, et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy[J]. Blood, 2008, 111(6): 3108-3115.
[17] Vacca P, Vitale C, Montaldo E, et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells[J]. Proc Natl Acad Sci U S A, 2011, 108(6): 2402-2407.
[18] Manaster I, Mizrahi S, Goldman-Wohl D, et al. Endometrial NK cells are special immature cells that await pregnancy[J]. J Immunol, 2008, 181(3): 1869-1876.
[19] Ivarsson MA, Stiglund N, Marquardt N, et al. Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood[J]. Mucosal Immunol, 2017, 10(2): 322-331.
[20] Williams PJ, Searle RF, Robson SC, et al. Decidual leucocyte populations in early to late gestation normal human pregnancy[J]. J Reprod Immunol, 2009, 82(1): 24-31.
[21] 金妮, 芦洁, 王明, 等. 蜕膜自然杀伤细胞对孕早期母胎界面免疫微环境的影响[J]. 中国计划生育和妇产科, 2021, 13(7): 42-45.
[22] Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice[J]. Front Immunol, 2017, 8: 467. doi:10.3389/fimmu.2017.00467.
[23] Hazan AD, Smith SD, Jones RL, et al. Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro[J]. Am J Pathol, 2010, 177(2): 1017-1030.
[24] Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface[J]. Nat Med, 2006, 12(9): 1065-1074.
[25] Manaster I, Mandelboim O. The unique properties of human NK cells in the uterine mucosa[J]. Placenta, 2008, 29(Suppl A): 60-66.
[26] Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 2018, 563(7731): 347-353.
[27] Fu B, Zhou Y, Ni X, et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors[J]. Immunity, 2017, 47(6): 1100-1113.
[28] Tilburgs T, Evans JH, Crespo AC, et al. The HLA-G cycle provides for both NK tolerance and immunity at the maternal-fetal interface[J]. Proc Natl Acad Sci U S A, 2015, 112(43): 13312-13317.
[29] Li YH, Zhou WH, Tao Y, et al. The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy[J]. Cell Mol Immunol, 2016, 13(1): 73-81.
[30] Dempsey LA. Tim-3 promotes maternal tolerance[J]. Nat Immunol, 2017, 18(11): 1189.
[31] Liu S, Diao L, Huang C, et al. The role of decidual immune cells on human pregnancy[J]. J Reprod Immunol, 2017, 124: 44-53. doi:10.1016/j.jri.2017.10.045.
[32] Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26(2): 192-197.
[33] Jiang X, Du MR, Li M, et al. Three macrophage subsets are identified in the uterus during early human pregnancy[J]. Cell Mol Immunol, 2018, 15(12): 1027-1037.
[34] Ning F, Liu H, Lash GE. The role of decidual macrophages during normal and pathological pregnancy[J]. Am J Reprod Immunol, 2016, 75(3): 298-309.
[35] Abrahams VM, Kim YM, Straszewski SL, et al. Macrophages and apoptotic cell clearance during pregnancy[J]. Am J Reprod Immunol, 2004, 51(4): 275-282.
[36] Grozdics E, Berta L, Bajnok A, et al. B7 costimulation and intracellular indoleamine-2,3-dioxygenase(IDO)expression in peripheral blood of healthy pregnant and non-pregnant women[J]. BMC Pregnancy Childbirth, 2014, 14: 306. doi:10.1186/1471-2393-14-306.
[37] Sayama S, Nagamatsu T, Schust DJ, et al. Human decidual macrophages suppress IFN-gamma production by T cells through costimulatory B7-H1: PD-1 signaling in early pregnancy[J]. J Reprod Immunol, 2013, 100(2): 109-117.
[38] 蒋梦琪, 王雁. 协同共刺激分子B7-H4与母胎免疫[J]. 中国生育健康杂志, 2019, 30(4): 398-400.
[39] Nancy P,Erlebacher A. T cell behavior at the maternal-fetal interface[J]. Int J Dev Biol, 2014, 58(2-4): 189-198.
[40] Tsuda S, Nakashima A, Shima T, et al. New paradigm in the role of regulatory T cells during pregnancy[J]. Front Immunol, 2019, 10: 573. doi:10.3389/fimmu.2019.00573.
[41] Wang SC, Li YH, Piao HL, et al. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy[J]. Cell Death Dis, 2015, 6: e1738. doi:10.1038/cddis.2015.112.
[42] van Egmond A, van der Keur C, Swings GM, et al. The possible role of virus-specific CD8(+)memory T cells in decidual tissue[J]. J Reprod Immunol, 2016, 113: 1-8. doi:10.1016/j.jri.2015.09.073.
[43] Zhu JF, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations(*)[J]. Annu Rev Immunol, 2010, 28: 445-489. doi:10.1146/annurev-immunol-030409-101212.
[44] Powell RM, Lissauer D, Tamblyn J, et al. Decidual T Cells exhibit a highly differentiated phenotype and pemo- nstrate potential fetal specificity and a strong transcriptional response to IFN[J]. J Immunol, 2017, 199(10): 3406-3417.
[45] Hirahara K, Nakayama T. CD4+T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm[J]. Int Immunol, 2016, 28(4): 163-171.
[46] Wang WJ, Sung N, Gilman-Sachs A, et al. T helper(Th)cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells[J]. Front Immunol, 2020, 11: 2025. doi:10.3389/fimmu.2020.02025.
[47] Taylor EB, Sasser JM. Natural killer cells and T lymphocytes in pregnancy and pre-eclampsia[J]. Clin Sci(Lond), 2017, 131(24): 2911-2917.
[48] Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells[J]. Nat Rev Immunol, 2011, 11(2): 119-130.
[49] Thornton AM, Korty PE, Tran DQ, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells[J]. J Immunol, 2010, 184(7): 3433-3441.
[50] Inada K, Shima T, Ito M, et al. Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content[J]. J Reprod Immunol, 2015, 107: 10-19. doi:10.1016/j.jri.2014.09.053.
[51] Chang RQ, Li DJ, Li MQ. The role of indoleamine-2,3-dioxygenase in normal and pathological pregnancies[J]. Am J Reprod Immunol, 2018, 79(4): e12786.
[52] Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion[J]. Mol Hum Reprod, 2005, 11(12): 865-870.
[53] Wang WJ, Liu FJ, Zhang X, et al. Periodic elevation of regulatory T cells on the day of embryo transfer is associated with better in vitro fertilization outcome[J]. J Reprod Immunol, 2017, 119: 49-53. doi:10.1016/j.jri.2017.01.002.
[54] 孙兰, 康晓敏, 武泽. CD4+T细胞在孕早期母胎界面免疫耐受中的研究进展[J]. 中国免疫学杂志, 2021, 37(6): 754-763. SUN Lan, KANG Xiaomin, WU Ze. Research progress of CD4+T cells in maternal-fetal interface immune tolerance in early pregnancy[J]. Chinese Journal of Immunology, 2021, 37(6): 754-763.
[55] 栾晓蕊, 李卫平. 滤泡性辅助T细胞亚型与原因不明复发性流产的关系研究[J]. 上海交通大学学报(医学版), 2017, 37(10): 1346-1349. LUAN Xiaorui, LI Weiping. Relationship between subtypes of T follicular helper cells and unexplained recurrent spontaneous abortion[J]. Journal of Shanghai Jiaotong University(Medical Science), 2017, 37(10): 1346-1349.
[56] Gardner L, Moffett A. Dendritic cells in the human decidua[J]. Biol Reprod, 2003, 69(4): 1438-1446.
[57] Wei R, Lai N, Zhao L, et al. Dendritic cells in pregnancy and pregnancy-associated diseases[J]. Biomed Pharmacother, 2021, 133: 110921. doi:10.1016/j.biopha.2020.110921.
[58] Tagliani E, Erlebacher A. Dendritic cell function at the maternal-fetal interface[J]. Expert Rev Clin Immunol, 2011, 7(5): 593-602. doi:10.1586/eci.11.52.
[59] Darmochwal-Kolarz DA, Kludka-Sternik M, Chmielewski T, et al. The expressions of CD200 and CD200R molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy[J]. Am J Reprod Immunol, 2012, 67(6): 474-481.
[60] Rieger L, Honig A, Sutterlin M, et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy[J]. J Soc Gynecol Investig, 2004, 11(7): 488-493.
[61] Kammerer U, Kruse A, Barrientos G, et al. Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation[J]. Immunol Invest, 2008, 37(5): 499-533.
[1] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[2] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[3] 赵立美,颜磊,申晓畅,孙一卿,何鹏娟,赵兴波. 米非司酮、米索前列醇对滋养细胞TRIM22表达的影响[J]. 山东大学学报 (医学版), 2019, 57(10): 86-92.
[4] 贾雪芹1,刘海英2,马玉燕2,高凌雪3,刘媛2. 肝细胞生长因子对滋养细胞HLX1基因的表达及侵袭能力的影响[J]. 山东大学学报(医学版), 2010, 48(2): 58-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙维彤,邹伟伟,李爱国,席延伟,张娜. 脂质体粒径对促进托氟啶口服吸收的影响[J]. 山东大学学报(医学版), 2007, 45(6): 639 -642 .
[2] 肖伟玲,林亚杰,牟东珍,孙萍,梁淑娟 . 分泌型人IL-1β表达载体的构建及在H7402细胞中的表达[J]. 山东大学学报(医学版), 2008, 46(2): 119 -122 .
[3] 于清梅,武玉玲,宋海岩,尹华伟,庄园 . p38丝裂原活化蛋白激酶在小鼠早期胚胎及围植入期子宫内膜的表达[J]. 山东大学学报(医学版), 2008, 46(2): 123 -127 .
[4] 张勇,叶静,郭新星,肖水清. 牙周膜牵张成骨快速移动牙牙髓中IL-8表达的变化[J]. 山东大学学报(医学版), 2008, 46(4): 379 -381 .
[5] 高静,陈雯,张同霞,王小花,戴廷军,姚红,赵秀鹤,迟兆富,单培彦 . 颞叶癫痫大鼠海马线粒体细胞色素氧化酶亚基Ⅲ和Ⅳ表达的变化[J]. 山东大学学报(医学版), 2007, 45(8): 817 -820 .
[6] . 干细胞标记物LGR5在结直肠癌发生发展中的表达及意义[J]. 山东大学学报(医学版), 2009, 47(8): 85 -88 .
[7] 杨奎忠,孙雪飞,项继顺,杜庆聪,黄凤昌 . c-FLIP反义寡核苷酸对食管癌EC109细胞裸鼠移植瘤抑制作用的实验研究[J]. 山东大学学报(医学版), 2007, 45(12): 1234 -1238 .
[8] 俞新爽,韩俊庆,王兴文,盛巍,王瑜. 乳腺癌患者细胞免疫水平与预后危险因素的关系及临床意义[J]. 山东大学学报(医学版), 2007, 45(9): 934 -937 .
[9] 于渊1,李岩1,荣风年2,梁婧1,刘晓琳1,王福立1. 自体CIK细胞治疗对卵巢癌调节性T细胞的影响[J]. 山东大学学报(医学版), 2010, 48(5): 101 -104 .
[10] 王海峰,史本康,张克勤,李永智,朱耀丰,王海新. B超检测的精索静脉直径及返流与术后精液质量的关系[J]. 山东大学学报(医学版), 2007, 45(7): 751 -752 .