您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (11): 33-38.doi: 10.6040/j.issn.1671-7554.0.2020.1136

• 眼科人工智能新进展专题 • 上一篇    下一篇

眼科疾病智能诊断方法最新进展

尹义龙1,*(),袭肖明2   

  1. 1. 山东大学软件学院人工智能研究中心, 山东 济南 250101
    2. 山东建筑大学计算机科学与技术学院, 山东 济南 250101
  • 收稿日期:2020-08-10 出版日期:2020-11-10 发布日期:2020-11-04
  • 通讯作者: 尹义龙 E-mail:ylyin@sdu.edu.cn
  • 作者简介:尹义龙,教授,博士研究生导师,主要从事人工智能、机器学习、数据挖掘领域的研究工作。现担任中国计算机学会人工智能与模式识别专委会常委、副秘书长,中国人工智能学会机器学习专委会常委、副秘书长,山东省人工智能学会理事长,山东省大数据研究会副会长等学术兼职。入选教育部新世纪优秀人才支持计划,获得山东省自然科学杰出青年基金资助。主持国家自然科学基金重点项目1项、国家重点研发专项课题1项、面上项目3项、青年项目1项,主持省部级科研项目11项。在《IEEE Trans Knowl Data En》《IEEE Trans Image Processing》《Pattern Recogn 》《IEEE Trans Multimedia》等国际期刊和International Joint Conference on Artificial Intelligence、IEEE Conference on Computer Vision and Pattern Recognition等国际会议发表论文80余篇。获山东省科技进步二等奖2项(第一完成人)
  • 基金资助:
    国家自然科学基金(61876098);国家自然科学基金(61701280)

Advances in the intelligent diagnosis of eye diseases

Yilong YIN1,*(),Xiaoming XI2   

  1. 1. Research Center of Artificial Intelligence in School of Software, Shandong University, Jinan 250101, Shandong, China
    2. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Received:2020-08-10 Online:2020-11-10 Published:2020-11-04
  • Contact: Yilong YIN E-mail:ylyin@sdu.edu.cn

摘要:

随着人口老龄化的日渐严重,眼科疾病的相关研究已成为重要的公共卫生课题。医学影像是眼科疾病临床诊断的重要辅助工具。近年来,随着人工智能技术的发展,利用人工智能技术结合医学影像对眼科疾病进行自动诊断已成为一个热门的研究课题。本文对眼科疾病智能诊断方法的最新进展进行综述,从影像中的病灶自动分割和眼科疾病的智能诊断两方面对现有方法进行分析,并对未来的研究方向进行展望,有利于为眼科智能诊断提供新观点和新思路。

关键词: 眼科疾病, 医学影像, 智能诊断

Abstract:

As the number of elderly people increases, eye diseases have become a tremendous economic and societal burden. Medical imaging plays an important role in the diagnosis of eye diseases. With the development of artificial intelligence, automatic diagnosis of eye diseases with medical imaging has attracted great attention in recent years. In order to provide new insights into the intelligent diagnostics methods of eye diseases, this paper reviews the recent advances including methods based on object segmentation and eye diseases diagnosis and discusses the future work.

Key words: Eye diseases, Medical imaging, Intelligent diagnosis

中图分类号: 

  • R574
1 Kanagasingam Y , Bhuiyan A , Abràmoff MD , et al. Progress on retinal image analysis for age related macular degeneration[J]. Prog Retin Eye Res, 2014, 38: 20- 42.
doi: 10.1016/j.preteyeres.2013.10.002
2 Acott TS , Vranka JA , Keller KE , et al. Progress in retinal and eye research normal and glaucomatous outflow regulation[J]. Prog Retin Eye Res, 2020, 11: 100897.
doi: 10.1016/j.preteyeres.2020.100897
3 Ahmed SF, Walid MA, Ahmed EM, Segmentation of Choroidal Neovascularization Lesions in Fluorescein Angiograms Using Parametric Modeling of the Intensity Variation[C]. IEEE Trans Biomed Eng, 2011: 1457-1460. doi: 10.1109/TBME.2013.2237906.Epub2013Jan9.
4 Lin KS , Tsai CL , Chen SJ , et al. Automatic Evaluation of Choroidal Neovascularization in Fluorescein Angiography[J]. Advances in Intelligent Systems and Applications, 2013, 21 (2): 377- 382.
5 Tsai CL , Yang YL , Chen SJ , et al. Automatic characterization of classic choroidal neovascularization by using adaboost for supervised learning[J]. Invest Ophthalmol Vis Sci, 2011, 52 (5): 2767- 2774.
doi: 10.1167/iovs.10-6048
6 Abdelmoula WM , Shah SM , Fahmy AS . Segmentation of choroidal neovascularization in fundus fluorescein angiograms[J]. IEEE Trans Biomed Eng, 2013, 60 (5): 1439- 1445.
7 Gao SS , Liu L , Bailey ST , et al. Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography[J]. J Biomed Opt, 2016, 21 (7): 76010.
doi: 10.1117/1.JBO.21.7.076010
8 Tan NM , Xu Y , Goh WB , et al. Robust multi-scale superpixel classification for optic cup localization[J]. Comput Med Imaging Graph, 2015, 40: 182- 193.
doi: 10.1016/j.compmedimag
9 Thakur N , Juneja M . Clustering based approach for segmentation of optic cup and optic disc for detection of Glaucoma[J]. Curr Med Imaging Rev, 2017, 13 (1): 99- 105.
10 Cheng J , Liu J , Xu Y , et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening[J]. IEEE Trans Med Imaging, 2013, 32 (6): 1019- 1032.
doi: 10.1109/TMI.2013.2247770
11 Girshick R , Donahue J , Darrell T , et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38 (1): 142- 158.
doi: 10.1109/TPAMI.2015.2437384
12 Dahl GE , Yu D , Deng L , et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Trans Audio Speech Lang Process, 2012, 20 (1): 30- 42.
13 Mohamed AR , Dahl GE , Hinton G . Acoustic modeling using deep belief networks[J]. IEEE Trans Audio Speech Lang Process, 2012, 20 (1): 14- 22.
doi: 10.1109/TASL.2011.2109382
14 Ling ZH , Deng L , Yu D , et al. Modeling spectral envelopes using restricted Boltzmann machines and deep belief networks for statistical parametric speech synthesis[J]. IEEE Trans Audio Speech Lang Process, 2013, 21 (10): 2129- 2139.
doi: 10.1109/TASL.2013.2269291
15 Zilly J , Buhmann JM , Mahapatra D . Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation[J]. Comput Med Imaging Graph, 2017, 55: 28- 41.
doi: 10.1016/j.compmedimag
16 Fu HZ , Cheng J , Xu YW , et al. Joint optic disc and cup segmentation based on mufti-label deep network and polar transformation[J]. IEEE Trans Med Imaging, 2018, 37 (7): 1597- 1605.
17 Xie Z , Ling T , Yang Y , et al. Optic disc and cup image segmentation utilizing contour-based transformation and sequence labeling networks[J]. J Med Syst, 2020, 44 (5): 1- 13.
18 Jiang YM , Duan LX , Cheng J , et al. Joint RCNN: a region-based convolutional neural network for optic disc and cup segmentation[J]. IEEE Trans Biomed Eng, 2020, 67 (2): 335- 343.
19 Yang XB , Zhang Y . Multi-atlas segmentation of optic disc in retinal images via convolutional neural network[J]. Multimed Tools Appl, 2020, 1- 11.
20 Rong YB, Yu K, Xiang DH, et al. Explaining convolutional neural networks for area estimation of choroidal neovascularization via genetic programming[M]//Computational pathology and ophthalmic medical image analysis. cham: springer international publishing, 2018: 210-218. doi: 10.1007/978-3-030-00949-6_25.
21 Maunz A , Benmansour F , Li Y , et al. Diagnostic accuracy of a machine-learning algorithm to detect and classify choroidal neovascularization based on SD-OCT in neovascular age-related macular degeneration (nAMD)[J]. Invest Ophthalmol Vis Sci, 2020, 61 (7): 2649- 2649.
22 Guan L, Yu K, Chen X. Fully automated detection and quantification of multiple retinal lesions in OCT volumes based on deep learning and improved DRLSE[C]. In Medical Imaging 2019: Image Processing. 2019: 1094933. doi: 10.1117/12.2512656.
23 Xi XM , Meng XJ , Yang L , et al. Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior[J]. Multimed Syst, 2019, 25 (2): 95- 102.
24 Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216
25 Takahashi H , Tampo H , Arai Y , et al. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy[J]. PLoS One, 2017, 12 (6): e0179790.
doi: 10.1371/journal.pone.0179790
26 Shankar K , Sait ARW , Gupta D , et al. Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model[J]. Pattern Recognit Lett, 2020, 133: 210- 216.
doi: 10.1016/j.patrec.2020.02.026
27 Qummar S , Khan FG , Shah S , et al. A deep learning ensemble approach for diabetic retinopathy detection[J]. IEEE Access, 2019, 7: 150530- 150539.
doi: 10.1109/access.2019.2947484
28 de la Torre J , Valls A , Puig D . A deep learning interpretable classifier for diabetic retinopathy disease grading[J]. Neurocomputing, 2020, 396: 465- 476.
doi: 10.1016/j.neucom.2018.07.102
29 Alqudah AM . AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images[J]. Med Biol Eng Comput, 2020, 58 (1): 41- 53.
30 Fang LY , Jin YX , Huang LF , et al. Iterative fusion convolutional neural networks for classification of optical coherence tomography images[J]. J Vis Commun Image Represent, 2019, 59: 327- 333.
doi: 10.1016/j.jvcir.2019.01.022
31 Fang L , Wang C , Li S , et al. Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification[J]. IEEE Trans Med Imaging, 2019, 38 (8): 1959- 1970.
doi: 10.1109/TMI.2019.2898414
32 Das V , Prabhakararao E , Dandapat S , et al. B-scan attentive CNN for the classification of retinal optical coherence tomography volumes[J]. IEEE Signal Process Lett, 2020, 27: 1025- 1029.
doi: 10.1109/LSP.2020.3000933
33 Abbas Q . Glaucoma-deep: detection of Glaucoma eye disease on retinal fundus images using deep learning[J]. Ijacsa, 2017, 8 (6): 41- 45.
34 Diaz-Pinto A , Morales S , Naranjo V , et al. Cnns for automatic glaucoma assessment using fundus images: an extensive validation[J]. BioMed Eng OnLine, 2019, 18: 29.
doi: 10.1186/s12938-019-0649-y
35 Fu HZ , Cheng J , Xu YW , et al. Disc-aware ensemble network for glaucoma screening from fundus image[J]. IEEE Trans Med Imaging, 2018, 37 (11): 2493- 2501.
doi: 10.1109/TMI.2018.2837012
36 Petersen CA , Mehta P , Lee AY , et al. Data-driven, feature-agnostic deep learning vs retinal nerve fiber layer thickness for the diagnosis of glaucoma[J]. JAMA Ophthalmol, 2020, 138 (4): 339- 340.
37 Chai YD , Liu HY , Xu J . Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models[J]. Knowl-Based Syst, 2018, 161: 147- 156.
doi: 10.1016/j.knosys.2018.07.043
38 Xu X , Zhang LL , Li JQ , et al. A hybrid global -local representation CNN model for automatic cataract grading[J]. IEEE J Biomed Health Inform, 2020, 24 (2): 556- 567.
39 Long EP , Lin HT , Liu ZZ , et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat Biomed Eng, 2017, 1 (2): 0024.
40 Gao XT , Lin S , Wong TY . Automatic feature learning to grade nuclear cataracts based on deep learning[J]. Comput Vis--ACCV 2014, 2015, 2693- 2701.
doi: 10.1007/978-3-319-16808-1_42
41 Zhang H , Niu K , Xiong Y , et al. Automatic cataract grading methods based on deep learning[J]. Comput Methods Programs Biomed, 2019, 182: 104978.
doi: 10.1016/j.cmpb.2019.07.006
42 Zhou Y , Li GQ , Li HQ . Automatic cataract classification using deep neural network with discrete state transition[J]. IEEE Trans Med Imaging, 2020, 39 (2): 436- 446.
doi: 10.1109/TMI.2019.2928229
[1] 尹义龙,袭肖明,孟宪静. 阿尔兹海默病的智能诊断方法[J]. 山东大学学报 (医学版), 2020, 1(8): 14-21.
[2] 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[2] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[3] 徐继禧,陈伟健. 髓内弥漫性中线胶质瘤伴H3 K27M突变1例[J]. 山东大学学报 (医学版), 2020, 1(7): 96 -101 .
[4] 冀永娟,项紫霓,匡桂芳. 青岛市两所三甲医院医务人员职业倦怠对生活质量影响的路径分析[J]. 山东大学学报 (医学版), 2020, 1(7): 102 -107 .
[5] 邓清文,刘文彬. 心血管疾病患者健康相关生命质量及其影响因素的多水平模型分析[J]. 山东大学学报 (医学版), 2020, 1(7): 115 -121 .
[6] 焉传祝,王伟,纪坤乾,赵玉英. 线粒体与脑疾病[J]. 山东大学学报 (医学版), 2020, 1(8): 34 -41 .
[7] 吴梦涛,吴鹏,杨燕菲,唐佃俊,苗祥岭,李凡东. CT静脉造影在诊治复发性下肢静脉曲张的应用[J]. 山东大学学报 (医学版), 2020, 1(9): 21 -26 .
[8] 刘超,闫动,李香,张蕾,李燕. 腹腔镜辅助经脐小切口治疗小儿美克尔憩室的临床分析[J]. 山东大学学报 (医学版), 2020, 1(9): 40 -44 .
[9] 孟朝暾,李钦, 孙卉,邬信芳,孙文凯,高伟. 白细胞介素18单核苷酸多态性与73例喉鳞状细胞癌易感性的关联性[J]. 山东大学学报 (医学版), 2020, 1(9): 58 -63 .
[10] 安迪,汪心婷,刘珍珍,贾存显. 青少年不宁腿综合征与自杀行为的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 77 -82 .