山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (11): 39-44.doi: 10.6040/j.issn.1671-7554.0.2020.1256
Yi QU*(),Huankai ZHANG,Xian SONG,Baorui CHU
摘要:
视网膜疾病是人类严重视力丧失的主要原因,糖尿病视网膜病变(DR)、青光眼视网膜病变、视神经病变及年龄相关性黄斑变性(AMD)等疾病的早期筛查及按时随访是疾病防治的重点。但由于眼科医生数量有限、难以开展大规模人工筛查。人工智能(AI)技术在眼科领域的应用为解决上述难题带来曙光。本文对AI在DR、青光眼视网膜病变及视神经病变、AMD等疾病诊断中的临床应用进行综述,探讨AI诊断系统在视网膜疾病教学中的应用,并指出目前AI诊断系统面临的问题,展望其在视网膜疾病领域的应用前景。
中图分类号:
1 |
Lee R , Wong TY , Sabanayagam C . Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye Vis (Lond), 2015, 2: 17.
doi: 10.1186/s40662-015-0026-2 |
2 |
Tham YC , Li X , Wong TY , et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121 (11): 2081- 2090.
doi: 10.1016/j.ophtha.2014.05.013 |
3 |
Wong WL , Su XY , Li X , et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2 (2): e106- e116.
doi: 10.1016/S2214-109X(13)70145-1 |
4 | 国家卫生和计划生育委员会. "十三五"全国眼健康规划(2016—2020年)[J]. 中华眼科杂志, 2017, 53 (7): 484- 486. |
5 |
Anand S , Fan VY , Zhang JH , et al. China's human resources for health: quantity, quality, and distribution[J]. Lancet, 2008, 372 (9651): 1774- 1781.
doi: 10.1016/S0140-6736(08)61363-X |
6 | McCarthy J , Minsky ML , Rochester N , et al. A proposal for the Dartmouth summer research project on artificial intelligence[J]. AI Magazine, 2006, 27 (4): 12- 14. |
7 |
Lip GY , Nieuwlaat R , Pisters R , et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation[J]. Chest, 2010, 137 (2): 263- 272.
doi: 10.1378/chest.09-1584 |
8 |
LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
9 |
Russakovsky O , Deng J , Su H , et al. ImageNet large scale visual recognition challenge[J]. Int J Comput Vis, 2015, 115 (3): 211- 252.
doi: 10.1007/s11263-015-0816-y |
10 |
Hirschberg J , Manning CD . Advances in natural language processing[J]. Science, 2015, 349 (6245): 261- 266.
doi: 10.1126/science.aaa8685 |
11 |
Garcia GP , Lavieri MS , Andrews C , et al. Accuracy of Kalman filtering in forecasting visual field and intraocular pressure trajectory in patients with ocular hypertension[J]. JAMA Ophthalmol, 2019, 137 (12)
doi: 10.1001/jamaophthalmol.2019.4190 |
12 |
Li ZX , He YF , Keel S , et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125 (8): 1199- 1206.
doi: 10.1016/j.ophtha.2018.01.023 |
13 |
Yim J , Chopra R , Spitz T , et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26 (6): 892- 899.
doi: 10.1038/s41591-020-0867-7 |
14 |
Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216 |
15 |
Chakrabarti R , Harper CA , Keeffe JE . Diabetic retinopathy management guidelines[J]. Expert Review of Ophthalmology, 2012, 7 (5): 417- 439.
doi: 10.1586/eop.12.52 |
16 | Solomon SD , Chew E , Duh EJ , et al. Diabetic retinopathy: a position statement by the American diabetes association[J]. Diabetes Care, 2017, 40 (3): 412- 418. |
17 |
Ferris FL . How effective are treatments for diabetic retinopathy?[J]. JAMA, 1993, 269 (10): 1290.
doi: 10.1001/jama.1993.03500100088034 |
18 |
Liew G , Michaelides M , Bunce C . A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010[J]. BMJ Open, 2014, 4 (2): e004015.
doi: 10.1136/bmjopen-2013-004015 |
19 |
Thomas RL , Halim S , Gurudas S , et al. IDF Diabetes Atlas: a review of studies utlising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018[J]. Diabetes Res Pract, 2019, 157: 107840.
doi: 10.1016/j.diabres.2019.107840 |
20 |
Williams R , Karuranga S , Malanda B , et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2020, 162: 108072.
doi: 10.1016/j.diabres.2020.108072 |
21 |
van der Heijden AA , Abramoff MD , Verbraak F , et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96 (1): 63- 68.
doi: 10.1111/aos.13613 |
22 |
Tufail A , Kapetanakis VV , Salas-Vega S , et al. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness[J]. Health Technol Assess, 2016, 20 (92): 1- 72.
doi: 10.3310/hta20920 |
23 |
Rajalakshmi R , Subashini R , Anjana RM , et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye (Lond), 2018, 32 (6): 1138- 1144.
doi: 10.1038/s41433-018-0064-9 |
24 |
Ting DSW , Cheung CY , Lim G , et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318 (22): 2211- 2223.
doi: 10.1001/jama.2017.18152 |
25 |
Gulshan V , Rajan RP , Widner K , et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India[J]. JAMA Ophthalmology, 2019, 137 (9): 987- 993.
doi: 10.1001/jamaophthalmol.2019.2004 |
26 |
Abràmoff MD , Lavin PT , Birch M , et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1: 39.
doi: 10.1038/s41746-018-0040-6 |
27 | Verbraak FD , Abramoff MD , Bausch GCF , et al. Diagnostic accuracy of a device for the automated detection of diabetic retinopathy in a primary care setting[J]. Diabetes Care, 2019, 42 (4): 651- 656. |
28 |
Ribeiro ML , Nunes SG , Cunha-Vaz JG . Microaneurysm turnover at the macula predicts risk of development of clinically significant macular edema in persons with mild nonproliferative diabetic retinopathy[J]. Diabetes Care, 2013, 36 (5): 1254- 1259.
doi: 10.2337/dc12-1491 |
29 | Liu S, Gong L, Ma K, et al. GREEN: a graph REsidual rE-ranking network for grading diabetic retinopathy[J]. arXiv prepeint arXiv: 2007.09968v2, 2020. |
30 |
Li Z , Keel S , Liu C , et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J]. Diabetes Care, 2018, 41 (12): 2509- 2516.
doi: 10.2337/dc18-0147 |
31 | Resnikoff S , Pascolini D , Etya'Ale D , et al. Global data on visual impairment in the year 2002[J]. Bull World Health Organ, 2004, 82 (11): 844- 851. |
32 | Glaucoma Research Foundation. Five common glaucoma tests[EB/OL]. (2020-01-09)[2020-09-07]. https://www.glaucoma.org/glaucoma/diagnostic-tests.php. |
33 |
Tatham AJ , Weinreb RN , Medeiros FA . Strategies for improving early detection of glaucoma: the combined structure-function index[J]. Clin Ophthalmol, 2014, 8: 611- 621.
doi: 10.2147/opth.s44586 |
34 |
Hennis A , Wu SY , Nemesure B , et al. Awareness of incident open-angle glaucoma in a population study: the Barbados Eye Studies[J]. Ophthalmology, 2007, 114 (10): 1816- 1821.
doi: 10.1016/j.ophtha.2007.06.013 |
35 | Iwase A , Suzuki Y , Araie M , et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study[J]. Ophthalmology, 2004, 111 (9): 1641- 1648. |
36 |
Osborne NN , Wood JP , Chidlow G , et al. Ganglion cell death in glaucoma: what do we really know?[J]. Br J Ophthalmol, 1999, 83 (8): 980- 986.
doi: 10.1136/bjo.83.8.980 |
37 |
Phene S , Dunn RC , Hammel N , et al. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs[J]. Ophthalmology, 2019, 126 (12): 1627- 1639.
doi: 10.1016/j.ophtha.2019.07.024 |
38 |
Asaoka R , Murata H , Hirasawa K , et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images[J]. Am J Ophthalmol, 2019, 198: 136- 145.
doi: 10.1016/j.ajo.2018.10.007 |
39 |
Li F , Wang Z , Qu GX , et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network[J]. BMC Med Imaging, 2018, 18 (1): 35.
doi: 10.1186/s12880-018-0273-5 |
40 |
Rudnicka AR , Kapetanakis VV , Jarrar Z , et al. Incidence of late-stage age-related macular degeneration in American whites: systematic review and meta-analysis[J]. Am J ophthalmol, 2015, 160 (1): 85- 93.
doi: 10.1016/j.ajo.2015.04.003 |
41 |
Bressler NM . Age-related macular degeneration is the leading cause of blindness[J]. JAMA, 2004, 291 (15): 1900- 1901.
doi: 10.1001/jama.291.15.1900 |
42 |
Burlina PM , Joshi N , Pekala M , et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135 (11): 1170- 1176.
doi: 10.1001/jamaophthalmol.2017.3782 |
43 |
Venhuizen FG , van Ginneken B , van Asten F , et al. Automated staging of age-related macular degeneration using optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2017, 58 (4): 2318- 2328.
doi: 10.1167/iovs.16-20541 |
44 |
Waldstein SM , Vogl WD , Bogunovic H , et al. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography[J]. JAMA Ophthalmol, 2020, 138 (7): 740- 747.
doi: 10.1001/jamaophthalmol.2020.1376 |
45 |
Lee H , Kang KE , Chung H , et al. Automated segmentation of lesions including subretinal hyperreflective material in neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2018, 191: 64- 75.
doi: 10.1016/j.ajo.2018.04.007 |
46 | Liu YT, Yang JY, Zhou Y, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network[J]. Br J Ophthalmol, 2020: bjophthalmol-bjophtha2019-315338. doi:10.1136/bjophthalmol-2019-315338. |
47 |
Li ZW , Guo C , Nie DY , et al. Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images[J]. Commun Biol, 2020, 3 (1): 15.
doi: 10.1038/s42003-019-0730-x |
48 |
Brown JM , Campbell JP , Beers A , et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136 (7): 803- 810.
doi: 10.1001/jamaophthalmol.2018.1934 |
49 | Nagasato D , Tabuchi H , Ohsugi H , et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion[J]. Int J Ophthalmol, 2019, 12 (1): 94- 99. |
50 |
Poplin R , Varadarajan AV , Blumer K , et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J]. Nat Biomd Eng, 2018, 2 (3): 158- 164.
doi: 10.1038/s41551-018-0195-0 |
51 |
Miller DD , Brown EW . Artificial intelligence in medical practice: the question to the answer?[J]. Am J Med, 2018, 131 (2): 129- 133.
doi: 10.1016/j.amjmed.2017.10.035 |
52 | 张宁男楠, 张璋. 人工智能辅助教学在医学影像规范化培训中的新探索[J]. 教育教学论坛, 2019, (25): 176- 178. |
ZHANG Ningnannan , ZHANG Zhang . New exploration of artificial intelligence assisted instruction in standardization training of residents[J]. Education Teaching Forum, 2019, (25): 176- 178. | |
53 | 李丽, 马琳. 人工智能技术在皮肤科教学中的应用[J]. 继续医学教育, 2018, 32 (11): 17- 18. |
54 | 徐涛, 王洪祥, 龚振宇, 等. 人工智能在神经外科教学中的应用[J]. 中国继续医学教育, 2018, 10 (34): 38- 39. |
XU Tao , WANG Hongxiang , GONG Zhenyu , et al. Application of artificial intelligence in neurosurgery teaching[J]. China Continuing Medical Education, 2018, 10 (34): 38- 39. | |
55 | 高蕾, 彭贤贵, 杨武晨, 等. 应用人工智能图像教学系统提高医学生骨髓细胞形态判读能力[J]. 中华医学教育探索杂志, 2020, 19 (5): 569- 573. |
GAO Lei , PENG Xiangui , YANG Wuchen , et al. Application of artificial intelligence teaching-picture system to improve the bone marrow cell morphological reading ability of clinical medical students[J]. Chinese Journal of Medical Education Research, 2020, 19 (5): 569- 573. | |
56 |
Long EP , Lin HT , Liu ZZ , et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat biomed Eng, 2017, 1 (2): 0024.
doi: 10.1038/s41551-016-0024 |
57 |
Zhang ML , Zhou ZH . A Review on multi-label learning algorithms[J]. IEEE Trans Knowl Data Eng, 2014, 26 (8): 1819- 1837.
doi: 10.1109/TKDE.2013.39 |
58 | Beede E, Baylor E, Hersch F, et al. A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu Hi USA. New York, NY, USA: ACM, 2020: 1-12. |
59 |
Li WT , Yang YH , Zhang K , et al. Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders[J]. Nat Biomed Eng, 2020, 4 (8): 767- 777.
doi: 10.1038/s41551-020-0577-y |
[1] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
[2] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21. |
[3] | 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4. |
[4] | CheungCarol Y.,冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32, 38. |
[5] | 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23. |
[6] | 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16. |
[7] | 何明光,刘驰,李治玺. 人工智能在眼科真实临床场景的应用:机遇和挑战[J]. 山东大学学报 (医学版), 2020, 58(11): 1-10. |
|