您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (8): 1-19.doi: 10.6040/j.issn.1671-7554.0.2019.471

• •    

大数据背景下整合健康保险&健康维护的理论方法体系

薛付忠1,2   

  1. 1.山东大学健康医疗大数据研究院, 山东 济南 250002;2.山东大学公共卫生学院生物统计学系, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 薛付忠. E-mail:xuefzh@sdu.edu.cn
  • 基金资助:
    山东省重点研发计划(2018CXGC1210)

Theoretical method system for integrating health insurance and health maintenance in the context of big data

XUE Fuzhong1,2   

  1. 1. Healthcare Big Data Institute of Shandong University, Jinan 250002, Shandong, China;
    2. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 在理论和实践上,健康保险与健康维护应为统一体,但目前结合不紧密。为此,提出了“整合健康保险&健康维护”新范式,并创建了其大数据共享平台。进而,遵循“大数据驱动、跨系统(健康保险、健康维护)整合、全程式(生命历程、疾病进程)干预、多学科交叉”思路,创建了“整合健康保险&健康维护”的理论方法体系。该体系包括大数据驱动的健康管理学理论方法、健康保险精算理论方法、I-M-P-G新三角四方范式及其管理决策和政策体系。在大数据驱动下,它将健康管理和管理式医疗应用到健康维护中,在减少健康保险机构I方赔付、增加预防/医疗服务提供M方收入及效率、维护享受保障人群P方健康、确保政府G方目标之间形成良性互动,达到四方共赢;旨在充分发挥轴心G方宏观调控作用推进社保-商保共赢发展,引导资金投向健康管理和管理式医疗,实现关口前移,达到节约经费和维护健康双赢目标,为“健康中国”战略的“大卫生”管理体制和“互联网+健康保险+健康维护”新业态提供理论方法支持。

关键词: 大数据, 整合健康保险&, 健康维护, I-M-P-G新三角四方范式

Abstract: Health insurance are supposed to be united with health maintenance in both theory and practice, while their current combination is not close enough in China. For this reason, this study proposed a novel paradigm that integrates health insurance and health maintenance, and established its big data sharing platform. Then, the theoretical and methodological system for integration of health insurance and health maintenance was established following the design ideas, including big data-driven, cross-system(health insurance and health maintenance)integration, whole-course(life course and disease process)intervention and multidisciplinary intersection. This system includes the theory and method of health management driven by big data, the actuarial theory and method of health insurance, the novel triangular quadrilateral paradigm of I-M-P-G and its management decision-making and policy system. Driven by big data, health management and managed care could be applied in health maintenance, by which decreasing the compensation of health insurance organizations(I), increasing the income and efficiency of preventive/medical service providers(M), maintaining the health of insured population(P)and ensuring the objectives of government(G)were well interacted, and achieved an all-win situation. Meanwhile, this paradigm could give full play to the role of government for macro-regulation to promote the win-win development between social insurance and business insurance, as well as guide the funds to health management and managed care to implement earlier prevention and realize the goals of both reduction of expenditures and maintaining health. This article provided a theoretical method support for the health management system in “Health China” strategy and the new type of operation of “Internet + Health insurance + Health maintenance”.

Key words: Big data, Integration of health insurance and health maintenance, Novel triangular quadrilateral paradigm of I-M-P-G

中图分类号: 

  • R574
[1] “健康中国2020”战略研究报告编委会. “健康中国2020”战略研究报告[M]. 北京: 人民卫生出版社, 2012.
[2] Vines D, Braceland A, Rollins E, et al. Comprehensive health insurance: billing, coding, and reimbursement[M]. United States: Pearson Higher Ed, 2013.
[3] Kongstvedt PR. Health insurance and managed care: what they are and how they work[M]. Boston: Jones & Bartlett Publishers, 2019.
[4] Green MA. Understanding health insurance: a guide to billing and reimbursement[M]. Stamford: Cengage Learning, 2018.
[5] Sharon B, Buchbinder NHS. Introduction to health care nanagement[M]. Boston: Jones & Bartlett Learning, 2016.
[6] Burns LR, Bradley EH, Weiner BJ. Shortell & Kaluznys healthcare management: organization design & behavior[M]. 6th edition, Stamford: Delmar Cengage Learning, 2011.
[7] Mazumder S. Big data tools and platforms[M] //Big data concepts, theories, and applications. Cham: Springer International Publishing, 2016: 29-128.
[8] Fernández A, del Río S, López V, et al. Big data with cloud computing: an insight on the computing environment, MapReduce, and programming frameworks[J]. WIREs Data Mining Knowl Discov, 2014, 4(5): 380-409.
[9] Safaei AA. Real-time processing of streaming big data[J]. Real-Time Syst, 2017, 53(1): 1-44.
[10] Casado R, Younas M. Emerging trends and technologies in big data processing[J]. Concurrency Computat: Pract Exper, 2015, 27(8): 2078-2091.
[11] 黎建辉, 杨风雷, 崔建业, 等. 全球食品安全信息监控与分析云平台架构研究[J]. 计算机应用研究, 2014, 31(8): 2361-2366, 2379. LI Jianhui, YANG Fenglei, CUI Jianye, et al. Research on architecture of GFSI cloud[J]. Appl Res Comput, 2014, 31(8): 2361-2366, 2379.
[12] Mortimer JT, Shanahan MJ. Handbook of the Life Course[M]. New York: Springer Science+Business Media, 2003.
[13] Ben-Shlomo Y, Mishra G, Kuh D. Life course epidemiology[M] // Handbook of Epidemiology. New York: Springer New York, 2014: 1521-1549.
[14] Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(8): 1847-1850.
[15] Wild CP. The exposome: from concept to utility[J]. Int J Epidemiol, 2012, 41(1): 24-32.
[16] 薛付忠. 健康医疗大数据驱动的健康管理学理论方法体系[J]. 山东大学学报(医学版), 2017, 55(6): 1-29. XUE Fuzhong. Healthcare big data-driven theory and methodology for health management[J]. Journal of Shandong University(Health Sciences), 2017, 55(6): 1-29.
[17] 谢远涛, 李政宵. 健康保险精算研究方法评述[J]. 山东大学学报(医学版), 2019, 57(8):20-38. XIE Yuantao, LI Zhengxiao. Theory and nethodology on health insurance actuarial science research[J]. Journal of Shandong University(Health Sciences), 2019, 57(8):20-38.
[18] 关键. 中国健康管理: 市场前瞻和价值分析[J]. 中国卫生产业, 2005, 2(11): 71-73.
[19] 中国保险监督管理委员会. 健康保险管理办法[M]. 北京: 中国保险监督管理委员会, 2018.
[20] Frees EW, Gao J, Rosenberg MA. Predicting the frequency and amount of health care expenditures[J]. N Am Actuar J, 2011, 15(3): 377-392.
[21] Frees EW, Jin XL, Lin X. Actuarial applications of multivariate two-part regression models[J]. Ann Actuar Sci, 2013, 7(2): 258-287.
[22] 孟生旺. 过离散次数分布模型的尾部特征[J]. 数理统计与管理, 2009, 28(3): 449-456. MENG Shengwang. Tail behavior of over-dispersed counts distributions[J]. Appl Stat Manag, 2009, 28(3): 449-456.
[23] Klein N, Kneib T, Lang S. Bayesian generalized additive models for location, scale, and shape for zero-inflated and overdispersed count data[J]. J Am Stat Assoc, 2015, 110(509): 405-419.
[24] Klugman SA, Panjer HH, Willmot GE. Loss models: from data to decisions[M]. New Jersey: John Wiley & Sons, 2012.
[25] Hartman BM, Groendyke C. Model selection and averaging in financial risk management[J]. N Am Actuar J, 2013, 17(3): 216-228.
[26] Hogg RV, Klugman SA. Loss distributions[M]. New Jersey: John Wiley & Sons, 2009.
[27] Azzalini A, Cappello TD, Kotz S. Log-skew-normal and log-skew-t distributions as models for family income data[J]. Journal of Income Distribution, 2003, 11(3): 12.
[28] Landsman Z, Makov U, Shushi T. Tail conditional moments for elliptical and log-elliptical distributions[J]. Insur: Math Econ, 2016, 71: 179-188. doi:10.1016/j.insmatheco.2016.09.001
[29] Bhati D, Ravi S. On generalized log-Moyal distribution: a new heavy tailed size distribution[J]. Insur: Math Econ, 2018, 79: 247-259. doi:10.1016/j.insmatheco.2018.02.002
[30] Calderín-Ojeda E, Kwok CF. Modeling claims data with composite Stoppa models[J]. Scand Actuar J, 2016, 2016(9): 817-836.
[31] Nadarajah S, Bakar SAA. New composite models for the Danish fire insurance data[J]. Scand Actuar J, 2014, 2014(2): 180-187.
[32] Scollnik DPM. On composite lognormal-Pareto models[J]. Scand Actuar J, 2007, 2007(1): 20-33.
[33] Scollnik DPM, Sun CC. Modeling with weibull-pareto models[J]. N Am Actuar J, 2012, 16(2): 260-272.
[34] Abu Bakar SA, Hamzah NA, Maghsoudi M, et al. Modeling loss data using composite models[J]. Insur: Math Econ, 2015, 61: 146-154. doi:10.1016/j.insmatheco.2014.08.008.
[35] Brahimi B, Meraghni D, Necir A, et al. Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses[J]. Insur: Math Econ, 2011, 49(3): 325-334.
[36] Ahn S, Kim JHT, Ramaswami V. A new class of models for heavy tailed distributions in finance and insurance risk[J]. Insur: Math Econ, 2012, 51(1): 43-52.
[37] Benkhelifa L. Kernel-type estimator of the reinsurance premium for heavy-tailed loss distributions[J]. Insur: Math Econ, 2014, 59: 65-70. doi:10.1016/j.insmatheco.2014.08.006
[38] Reynkens T, Roel V, Beirlant J, et al. Modeling censored losses using splicing: a global fit strategy with mixed erlang and extreme value distributions[J]. SSRN, 2017.
[39] Punzo A, Bagnato L, Maruotti A. Compound unimodal distributions for insurance losses[J]. Insur: Math Econ, 2018, 81: 95-107. doi:10.1016/j.insmatheco.2017.10.007.
[40] Bernardi M, Maruotti A, Petrella L. Skew mixture models for loss distributions: a Bayesian approach[J]. Insur: Math Econ, 2012, 51(3): 617-623.
[41] Verbelen R, Gong L, Antonio K, et al. Fitting mixtures of erlangs to censored and truncated data using the EM algorithm[J]. ASTIN Bull, 2015, 45(3): 729-758.
[42] Miljkovic T, Grün B. Modeling loss data using mixtures of distributions[J]. Insur: Math Econ, 2016, 70: 387-396. doi:10.1016/j.insmatheco.2016.06.019.
[43] Jørgensen B, Paes de Souza MC. Fitting Tweedies compound Poisson model to insurance claims data[J]. Scand Actuar J, 1994, 1994(1): 69-93.
[44] 孟生旺, 李政宵. 基于随机效应零调整回归模型的保险损失预测[J]. 统计与信息论坛, 2015, 30(12): 3-8, 9. MENG Shengwang, LI Zhengxiao. Prediction of insurance loss based on zero-adjusted random-effect regression models[J]. Stat Inf Forum, 2015, 30(12): 3-8, 9.
[45] 孟生旺. 广义线性模型在汽车保险定价的应用[J]. 数理统计与管理, 2007, 26(1): 24-29. MENG Shengwang. An application of generalized linear model to automotor insurance pricing[J]. Appl Stat Manag, 2007, 26(1): 24-29.
[46] McCullagh P. Generalized linear models[J]. Eur J Oper Res, 1984, 16(3): 285-292.
[47] Haberman S, Renshaw AE. Generalized linear models and actuarial science[J]. Statistician, 1996, 45(4): 407-436.
[48] de Jong P, Heller GZ. Generalized linear models for insurance data[M]. Cambridge: Cambridge University Press, 2008.
[49] Cumming RB, Knutson D, Cameron BA, et al. A comparative analysis of claims-based methods of health risk assessment for commercial populations[M]. Minneapolis: Milliman USA, Inc., + Park Nicollet Institute Health Research Center, 2002.
[50] Winkelman R, Mehmud S. A comparative analysis of claims-based tools for health risk assessment[J]. Society of Actuaries, 2007: 1-70. doi:10.1002/0471752010.ch25.
[51] Mehmud SM. “Nontraditional variables in healthcare risk adjustment.” Report prepared for the Society of Actuaries’ Health Section[R]. New York: Wakely Consulting Group, 2013.
[52] Duncan IG. Healthcare risk adjustment and predictive modeling[M]. New Hartford: Actex Publications, 2011.
[53] Fellingham GW, Kottas A, Hartman BM. Bayesian nonparametric predictive modeling of group health claims[J]. Insur: Math Econ, 2015, 60: 1-10. doi:10.1016/j.insmatheco.2014.10.011.
[54] Rosenberg MA, Farrell PM. Predictive modeling of costs for a chronic disease with acute high-cost episodes[J]. N Am Actuar J, 2008, 12(1): 1-19.
[55] Ohlsson E, Johansson B. Non-life insurance pricing with generalized linear models[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
[56] Kuhn M, Johnson K. Applied predictive modeling[M]. New York: Springer, 2013.
[57] Henckaerts R, Antonio K, Clijsters M, et al. A data driven binning strategy for the construction of insurance tariff classes[J]. SSRN, 2017. doi:10.2139/ssrn.3052174.
[58] 孟生旺. 汽车保险的精算统计模型[M]. 北京:中国统计出版社, 2014.
[59] Duncan I, Loginov M, Ludkovski M. Testing alternative regression frameworks for predictive modeling of health care costs[J]. N Am Actuar J, 2016, 20(1): 65-87.
[60] 谢远涛, 李政宵. 基于联合定价模型的奖惩因子的扩展与比较[J]. 统计与信息论坛, 2015, 30(6): 33-38, 39. XIE Yuantao, LI Zhengxiao. Extension and comparison of bonus-Malus factor based on joint pricing models[J]. Stat Inf Forum, 2015, 30(6): 33-38, 39.
[61] Frangos NE, Vrontos SD. Design of optimal bonus-Malus systems with a frequency and a severity component on an individual basis in automobile insurance[J]. ASTIN Bull, 2001, 31(1): 1-22.
[62] Pinquet J. Designing optimal bonus-Malus systems from different types of claims[J]. ASTIN Bull, 1998, 28(2): 205-220.
[63] 李政宵, 谢远涛, 蒋涛. 基于线性混合模型的风险相依信度模型构建[J]. 统计与决策, 2015(11): 31-34. doi:10.13546/j.cnki.tjyjc.2015.11.007.
[64] Antonio K, Beirlant J. Actuarial statistics with generalized linear mixed models[J]. Insur: Math Econ, 2007, 40(1): 58-76.
[65] 谢远涛, 杨娟. 广义Gamma分布簇线性混合模型的收缩估计[J]. 统计与决策, 2015, 27(5): 37-40.
[66] 谢远涛, 杨娟. 广义Gamma分布簇广义线性混合模型的构建[J]. 统计研究, 2010, 27(10): 75-80. XIE Yuantao, YANG Juan. Generalized linear mixed models based on generalized gamma distribution[J]. Stat Res, 2010, 27(10): 75-80.
[67] Xie YT, Li ZX, Parsa RA. Extension and application of credibility models in predicting claim frequency[J]. Math Probl Eng, 2018, 2018: 1-8. doi:10.1155/2018/6250686.
[68] 谢远涛, 毛羽. 基于进展时间和操作时间的两步广义线性混合模型非寿险准备金估计[J]. 保险研究, 2016(11): 68-77. doi:10.13497/j.cnki.is.2016.11.006. XIE Yuantao, MAO Yu. Two-step generalized linear mixed models based on development time and operational time in non-life insurance loss reserving[J]. Insurance Studies, 2016(11): 68-77. doi:10.13497/j.cnki.is.2016.11.006.
[69] 谢远涛, 杨娟. 基于操作时间和广义线性混合模型的准备金评估技术研究[J]. 保险研究, 2014(3): 54-62. doi:10.13497/j.cnki.is.2014.03.001. XIE Yuantao, YANG Juan. Research on claims reserving based on operational time and generalized linear mixed models[J]. Insurance Studies, 2014(3): 54-62. doi:10.13497/j.cnki.is.2014.03.001.
[70] Carter LR, Lee RD. Modeling and forecasting US sex differentials in mortality[J]. Int J Forecast, 1992, 8(3): 393-411.
[71] Renshaw AE, Haberman S. A cohort-based extension to the Lee-Carter model for mortality reduction factors[J]. Insur: Math Econ, 2006, 38(3): 556-570.
[72] Reither EN, Masters RK, Yang YC, et al. Should age-period-cohort studies return to the methodologies of the 1970s?[J]. Soc Sci Med, 2015, 128: 356-365. doi:10.1016/j.socscimed.2015.01.011.
[73] Bell A. Life-course and cohort trajectories of mental health in the UK, 1991-2008: a multilevel age-period-cohort analysis[J]. Soc Sci Med, 2014, 120: 21-30. doi:10.1016/j.socscimed.2014.09.008.
[74] Cairns AJG, Blake D, Dowd K. A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration[J]. J Risk Insur, 2006, 73(4): 687-718.
[75] 荆涛, 杨舒. 商业健康保险在多层次医疗保障体系中的地位与发展现状[J]. 中国医疗保险, 2016(6): 18-22. doi:10.369/j.issn.1674-3830.2016.6.004. JING Tao, YANG Shu. The position and development status of commercial health insurance in the multi-level medical insurance systems[J]. China Heal Insur, 2016(6): 18-22. doi:10.369/j.issn.1674-3830.2016.6.004.
[76] 张颖, 胡炳志, 许佳馨. 商业健康保险与社会医疗保险制度对接路径设计: 基于再保险与共同保险的视角[J]. 经济体制改革, 2015(3): 160-164. ZHANG Ying, HU Bingzhi, XU Jiaxin. The reinsurance and coinsurance design of cooperation mechanism between social health insurance and private health insurance[J]. Reform Econ Syst, 2015(3): 160-164.
[77] 冯鹏程. 论商业健康保险和社会医疗保险的共赢[J]. 中国医疗保险, 2013(11): 67-70. doi:10.3969/j.issn.1674-3830.2013.11.025. FENG Pengcheng. Win-win development of the private health insurance and social medical insurance[J]. China Heal Insur, 2013(11): 67-70. doi:10.3969/j.issn.1674-3830.2013.11.025.
[78] 张颖, 胡炳志, 陈洁涵. 公立医疗保险制度对商业健康保险的挤出效应研究: 基于动态视角的实证分析[J]. 东南大学学报(哲学社会科学版), 2015, 17(2): 83-88, 147. ZHANG Ying, HU Bingzhi, CHEN Jiehan. Crowding-out effect of social health insurance on private health insurance: an empirical research based on dynamic panel data model[J]. Journal of Southeast University Philosophy and Social Science, 2015, 17(2): 83-88, 147.
[79] 王向楠. 社会医疗保险、市场结构与我国商业健康保险发展[J]. 保险研究, 2011(7): 35-41. doi:10.13497/j.cnki.is.2011.07.016. WANG Xiangnan. Social medical insurance, market structure and the development of Chinas commercial health insurance[J]. Insurance Studies, 2011(7): 35-41. doi:10.13497/j.cnki.is.2011.07.016.
[80] 代宝珍, 周绿林, 余悦. 管理型医疗保险方案与补偿型健康保险方案的比较研究[J]. 中国卫生事业管理, 2013, 30(9): 663-664, 673. DAI Baozhen, ZHOU Lülin, YU Yue. Comparatively studying on managed care plan and compensatory plan of health insurance[J]. Chinese Health Service Management, 2013, 30(9): 663-664, 673.
[81] 张颖, 胡炳志. 公立医疗保险制度与商业健康保险筹资关系探讨: 基于七国的比较研究[J]. 武汉大学学报(哲学社会科学版), 2014, 67(1): 39-44. ZHANG Ying, HU Bingzhi. An analysis of relationship between social health insurance and private health insurance in an international context[J]. Wuhan University Journal(Philosophy & Social Science), 2014, 67(1): 39-44.
[82] 蒋宇华. 商业健康险与社会医疗保险协调运作研究: 与奥巴马医改方案相比照[J]. 中国医疗保险, 2015(10): 64-67. doi:10.369/j.issn.1674-3830.2015.10.019. JIANG Yuhua. Research on the coordinative operation of commercial health insurance and social medical insurance: compared with the obama healthcare reform act[J]. China Health Insurance, 2015(10): 64-67. doi:10.369/j.issn.1674-3830.2015.10.019.
[83] 黄渊. 刍议中国健康保险精算中存在的问题与解决对策[J]. 时代金融, 2015(8): 215.
[84] 何文炯. 加强社会医疗保险精算[J]. 中国医疗保险, 2012(2): 30-34. doi:10.3969/j.issn.1674-3830.2012.2.8. HE Wenjiong. Strengthening actuarial valuation of social medical insurance[J]. China Health Insurance, 2012(2): 30-34. doi:10.3969/j.issn.1674-3830.2012.2.8.
[85] 黄全, 郭学勤, 魏炜. 我国健康保险精算方法研究现状分析[J]. 金融与经济, 2007(1): 64-67. doi:10.3969/j.issn.1006-169X.2007.01.018
[86] 曾益, 任超然, 李媛媛. 中国基本医疗保险制度财务运行状况的精算评估[J]. 财经研究, 2012, 38(12): 26-37. ZENG Yi, REN Chaoran, LI Yuanyuan. Actuarial evaluation of the financial operation situation of chinas basic medical insurance system[J]. Journal of Finance Economics, 2012, 38(12): 26-37.
[1] 况利,徐小明,曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报 (医学版), 2022, 60(4): 10-16.
[2] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[3] 薛付忠. 健康医疗大数据驱动的健康管理学理论方法体系[J]. 山东大学学报(医学版), 2017, 55(6): 1-29.
[4] 葛树建, 林炜炜, 丛琳, 张涛, 韩晓娟, 张清华, 杜怡峰. 基于Web构建山东省阿尔茨海默病临床数据库[J]. 山东大学学报(医学版), 2015, 53(10): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!