山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (3): 6-11.doi: 10.6040/j.issn.1671-7554.0.2016.1591
李帅1,王雅琳2,孙忠文3,朱梅佳4
LI Shuai1, WANG Yalin2, SUN Zhongwen3, ZHU Meijia4
摘要: 目的 探讨Nod样受体蛋白3(NLRP3)炎性体在2型糖尿病脑微血管内皮中的变化及机制。 方法 3月龄Wistar大鼠和自发性2型糖尿病(GK)大鼠各5只,采用免疫组织化学法观察NLRP3在脑组织中的表达;体外培养小鼠脑微血管内皮细胞(CMEC)。不同糖浓度培养基模拟2型糖尿病内环境,活性氧(ROS)阻断剂N-乙酰半胱氨酸(NAC)作为抑制剂,将细胞分为对照组(糖浓度5.6 mmol/L)、高糖1组(HG1组,培养基糖浓度10 mmol/L)、高糖2组(HG2组,培养基糖浓度20 mmol/L)、高糖3组(HG3,培养基糖浓度30 mmol/L)及高糖+NAC组(HG+NAC组,目的蛋白表达较明显组的糖浓度)。采用Western blotting法检测各组硫氧还蛋白交互蛋白(TXNIP)和NLRP3的表达,并对TXNIP和NLRP3是否存在相关性进行分析;采用ELISA法检测白介素1β(IL-1β)的含量;采用流式细胞术检测对照组、HG3组、HG+NAC组ROS的含量。 结果 NLRP3在脑微血管壁聚集,与Wistar大鼠相比,GK大鼠的阳染强度,阳染血管数均有增加(P<0.05);与对照组相比,HG1组、HG2组、HG3组TXNIP、NLRP3的表达增加(P<0.01),HG3组最明显,细胞内IL-1β水平增高(P<0.01),ROS的含量增加(P<0.01);细胞内TXNIP和NLRP3的表达呈正相关性(r=0.993;P<0.05);给予ROS清除剂后,与HG3组相比,HG+NAC组细胞内ROS含量下降(P<0.01),TXNIP、NLRP3表达水平下降(P<0.01),细胞内IL-1β水平下降(P<0.01)。 结论 NLRP3在2型糖尿病脑微血管内皮细胞中经ROS-TXNIP途径被激活,并且促进炎性因子IL-β的释放,在2型糖尿病脑微血管损伤中发挥重要作用。
中图分类号:
[1] Prasad S, Naik P, Cucullo L, et al. Diabetes mellitus and blood-brain barrier dysfunction: an overview[J]. J Pharmacovigil, 2014, 2(2): 125. [2] Sun YN, Liu LB, Xue YX, et al. Effects of insulin combined with idebenone on blood-brain barrier permeability in diabetic rats [J]. J Neurosci Res, 2015, 93(4): 666-677. [3] Umegaki H, Hayashi T, Nomura H, et al. Cognitive dysfunction: an emerging concept of a new diabetic complication in the elderly [J]. Geriatr Gerontol Int, 2013, 13(1): 28-34. [4] Saedi E, Gheini MR, Faiz F, et al. Diabetes mellitus and cognitive impairments [J]. World J Diabetes, 2016, 7(17): 412-422. [5] Price TO, Eranki V, Banks WA, et al. Topiramate treatment protects blood-brain barrier pericytes from hyperglycemia-induced oxidative damage in diabetic mice [J]. Endocrinology, 2012, 153(1): 362-372. [6] Brownlee M. Biochemistry and molecular cell biology of diabetic complications [J]. Nature, 2001, 13(414): 813-840. [7] Soares E, Prediger RD, Nunes S, et al. Spatial memory impairments in a prediabetic rat model [J]. Neuroscience, 2013, 250(10): 565-577. [8] Shah GN, Morofuji Y, Banks WA, et al. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: Implications for cerebral microvascular disease in diabetes [J]. Biochem Biophys Res Commun, 2013, 440(2): 354-358. [9] Yunpeng D, Casey MM, Kern T, et al. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells [J]. Free Radic Biol Med, 2003, 35(11): 1491-1499. [10] Wang P, Huang R, Lu S, et al. RAGE and AGEs in mild cognitive impairment of diabetic patients: a cross-sectional study [J]. PLoS One, 2016, 11(1): 0145521. doi:10.1371. [11] Bauernfeind F, Hornung V. Of inflammasomes and pathogens - sensing of microbes by the inflammasome [J]. EMBO Mol Med, 2013, 5(6): 814-826. [12] Gombault A, Baron L, Couillin I, et al. ATP release and purinergic signaling in NLRP3 inflammasome activation [J]. Front Immunol, 2012, 3(11): 414. [13] Lima HJr, Jacobson LS, Goldberg MF, et al. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death [J]. Cell Cycle, 2013, 12(12): 1868-1878. [14] Lane T, Flam B, Lockey R, et al. TXNIP shuttling: missing link between oxidative stress and inflammasome activation [J]. Front Physiol, 2013, 4: 50. [15] Chen KH, Zhang JG, Zhang WW, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy [J]. Int J Biochem Cell Biol, 2013, 45(5): 932-943. [16] Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation [J]. Nat Immunol, 2010, 11(2): 136-140. [17] Latz E, Xiao TS, Stutz A, et al. Activation and regulation of the inflammasomes [J]. Nat Rev Immunol, 2013, 13(6): 397-411. [18] Shaked M, Kaiser N, Leibowitz G, et al. Insulin counteracts glucotoxic effects by suppressing thioredoxin-interacting protein production in INS-1E beta cells and in Psammomys obesus pancreatic islets [J]. Diabetologia, 2009, 52(4): 636-644. [19] Oslowski CM, Hara T O, Sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome [J]. Cell Metab, 2012, 16(2): 265-273. [20] 谢荣辉, 周师洁, 殷明. N-乙酰半胱氨酸对过氧化氢诱导的骨髓间充质干细胞凋亡的保护及作用机制研究[J]. 中国药理学通报, 2014, 30(1): 54-59. [21] Yang F, Wang Z, Wei X, et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke [J]. J Cereb Blood Flow Metab, 2014, 34(4): 660-667. |
[1] | 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14. |
[2] | 赵作辉,李翠玲,王道光,王风芹,曲宏懿,丁森泰,巩晶,吕家驹,杨静华. MnSOD乙酰化对肾透明细胞癌786-O细胞增殖、凋亡的影响[J]. 山东大学学报(医学版), 2017, 55(9): 31-35. |
[3] | 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86. |
[4] | 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72. |
[5] | 彭力,强晔,赵蕙琛,陈诗鸿,姚伟东,刘元涛. 2型糖尿病患者应用西格列汀的短期疗效及影响因素[J]. 山东大学学报(医学版), 2016, 54(8): 60-63. |
[6] | 林栋,管庆波. 2型糖尿病男性患者血清睾酮水平低下对非酒精性脂肪肝的影响[J]. 山东大学学报(医学版), 2016, 54(7): 33-37. |
[7] | 王雪,李倩,王莉,孙书珍,马爱华. CXCL16基因沉默减轻ox-LDL对小鼠足细胞损伤[J]. 山东大学学报(医学版), 2016, 54(6): 16-21. |
[8] | 木哈达斯·吐尔逊依明,帕它木·莫合买提,托兰古丽·买买提库尔班. CDKAL1(rs10946398 C/A)基因多态性与2型糖尿病易感性关系Meta分析[J]. 山东大学学报(医学版), 2016, 54(2): 75-85. |
[9] | 于宁,高燕燕,咸玉欣,牛佳鹏,李莉,王静,曹彩霞. 艾塞那肽对2型糖尿病合并非酒精性脂肪肝患者肝脏脂肪含量及血清chemerin水平的影响[J]. 山东大学学报(医学版), 2016, 54(11): 51-55. |
[10] | 张莉,朱惠明,王艳梅,江堤,孙贤久,乐有林. 2型糖尿病患者腹胀与小肠细菌过度生长的关系[J]. 山东大学学报(医学版), 2016, 54(1): 45-47. |
[11] | 刘言训, 刘佳, 张涛, 王璐, 薛付忠, 王萍. 基于纵向监测队列的2型糖尿病与甲状腺结节的关联性[J]. 山东大学学报(医学版), 2015, 53(8): 83-86. |
[12] | 刘辉, 陈桐帅, 李娜, 王舒健, 李静媛, 卜培莉. Sirt3对人脐静脉内皮细胞衰老的影响[J]. 山东大学学报(医学版), 2015, 53(5): 41-45. |
[13] | 杨璐, 周英泽, 倪明, 樊秀双, 满建梅, 郭军堂. β-synuclein对Ⅱ型囊泡单胺转移体表达的促进作用[J]. 山东大学学报(医学版), 2015, 53(4): 61-64. |
[14] | 裴蕾蕾, 孙中华, 李哲, 赵文萍. 西格列汀联合大剂量胰岛素治疗2型糖尿病的临床观察[J]. 山东大学学报(医学版), 2015, 53(2): 39-42. |
[15] | 胡芳志, 张正军, 耿厚法, 梁秋华, 孙琳. 2型糖尿病患者尿微量白蛋白与脑组织代谢物变化的关系[J]. 山东大学学报(医学版), 2015, 53(2): 43-47. |
|